暮春是什么时候| 当归有什么作用| 巨蟹是什么星座| 月经量太少是什么原因引起的| 摩羯座是什么星象| 命途多舛是什么意思| 人为什么会衰老| 辐射是什么| 戳是什么意思| 摇头晃脑是什么生肖| cr是什么检查| 仙人跳是什么意思啊| 可什么可什么成语| 大便有点绿色是什么原因| 异的偏旁是什么| 用什么擦地最干净| 本来无一物何处惹尘埃什么意思| 死侍是什么意思| 肾阳虚女性什么症状| 靶向药是什么药| 子宫切除后对身体有什么影响| 三国演义是什么朝代| 契爷是什么意思| 蝙蝠进屋有什么预兆| 公关是干什么的| 父亲节做什么手工| 倦怠期是什么意思| 吃什么水果能长高| 颈椎病头晕吃什么药好| bone什么意思| hyq什么意思| 牛鞭是什么| 一枚什么| a血型和o血型生出宝宝是什么血型| dvt是什么意思| 扒灰是什么意思| 左膝关节退行性变是什么意思| 山竹里面黄黄的是什么| 吃白萝卜有什么好处| 发烧时不宜喝什么饮料| 思维敏捷是什么意思| enne是什么烟| 为什么老是想吐| 人言可畏是什么意思| 胡萝卜不能和什么食物一起吃| 上火喝什么饮料| ap医学上是什么意思| 吃饼是什么意思| 表象是什么意思| 代谢不好是什么原因| 自限性疾病是什么意思| 都有什么大学| 肖想是什么意思| 梦见拖地是什么意思| 爱新觉罗是什么意思| 做什么检查确诊是白塞| 下午5点是什么时辰| 银杯子喝水有什么好处| rh是什么血型| 轻度脂肪肝有什么症状| 什么时候喝牛奶最好| 手臂粗是什么原因| 小孩嗓子哑了吃什么药| head是什么牌子| 风花雪月什么意思| 孕妇腰疼是什么原因| 右腿麻木是什么征兆| 痛经什么原因引起的| 清关是什么意思| 恶心想吐吃什么药好| 嫖娼是什么| 碱性食物对身体有什么好处| 过敏打什么针| 紧锣密鼓是什么意思| 正月初九是什么星座| 刁子鱼是什么鱼| 四月十六日是什么星座| 2002年属什么| 手为什么会发麻| 谩骂是什么意思| 感冒没胃口吃什么好| 鸭子炖汤和什么一起炖最有营养| 仔仔是什么意思| 心脏问题挂什么科| 尿液中粘液丝高是什么原因| 过敏看什么科室| 异地办理护照需要什么材料| 水对什么| 康普茶是什么| 双鱼座的上升星座是什么| 有什么好看的美剧| 慢悠悠的近义词是什么| 挑刺是什么意思| 平顶山为什么叫平顶山| 前列腺肥大是什么原因引起| 为什么生我| 松香有毒吗对人体有什么危害| 变蛋吃多了有什么危害| 肺气肿是什么原因导致的| 折耳根什么味道| 吃秋葵有什么禁忌| 什么入伏| 宝宝什么时候断奶最好| 去韩国需要办理什么手续| 做ct需要注意什么| 撬墙角是什么意思| 妇科检查清洁度二度是什么意思| 什么会引起高血压| 逝者已矣生者如斯是什么意思| 早些泄挂什么科| 汗是什么味道| 骨头坏死是什么感觉| 吃什么可以治痔疮| 经常咳嗽是什么病| 3月28号是什么星座| 心慌吃什么药好| 粘液丝是什么| 奇亚籽是什么| 磨牙是什么原因怎么治疗| 一进大门看见什么最好| 肌酸激酶高挂什么科| 荷花象征着什么| 痔疮的表现症状是什么| 如果是什么意思| 头晕为什么做眼震检查| 排卵期是指什么时候| crh是什么意思| 什么不已| 三个又是什么字| 身体抽搐是什么原因| 山炮是什么意思| 黄芪泡水喝有什么好处| 乾隆叫什么| leu是什么意思| 巨峰葡萄为什么叫巨峰| 微博是什么| hrd阳性是什么意思| 手心有痣代表什么| 脸上爱长痘痘是什么原因| 舌苔发黑是什么原因引起的| 喝苦荞茶有什么好处和坏处| 响屁多是什么原因| 活动无耐力与什么有关| 身上起痘痘是什么原因| igm阳性是什么意思| 眼皮突然肿了是什么原因| 五行中金代表什么| 一般事故隐患是指什么| 为什么生理期不能做| 梦到小孩子是什么意思| 梦见买鞋子是什么意思| 耐受性是什么意思| 蚕豆有什么营养| 巨人观是什么意思| 吃什么代谢快有助于减肥| 小姨的女儿叫什么| 戒烟为什么会长胖| 小肠是干什么的| 讳疾忌医什么意思| 科目一和科目四有什么区别| 褪黑素什么时候吃| 茶走是什么意思| 尿白细胞加减什么意思| 今年是什么年庚| 屎壳郎的学名叫什么| 四川古代叫什么| 尪痹片主治什么| 纪梵希为什么不娶赫本| 为什么人死后要盖住脸| 什么中毒查不出来| 澳门区花是什么花| 灼热感是什么样的感觉| 天秤座女生什么性格| 双鱼座是什么象星座| 时来运转是什么意思| 右脚踝肿是什么原因引起的| 什么的走| 生化是什么| 倒班是什么意思| 什么照镜子里外不是人| 肠道长息肉是什么原因造成的| 什么是远视| 什么糖不能吃| 女性喝什么利尿最快| 提报是什么意思| alyx是什么牌子| 三是什么意思| 做梦捡到钱了什么预兆| 8月7号是什么星座| 鳀鱼是什么鱼| 箭在弦上是什么意思| 211是什么星座| 原生家庭是什么| 84年属鼠是什么命| 检察长是什么级别| 早退是什么意思| 宝宝睡眠不好是什么原因| 生日送百合花代表什么| 乳腺增生吃什么| 手麻脚麻是什么原因| 梅肉是什么肉| 安宫牛黄丸治什么病| 满目苍夷是什么意思| 独角仙吃什么食物| 灵芝煮水喝有什么功效| 小孩嘴臭是什么原因| 村书记是什么级别| 高铁和地铁有什么区别| 什么牌子的冰箱好| 十指连心是什么意思| 杠杠滴是什么意思| 心肌炎吃什么食物最好| 送什么生日礼物给妈妈| 吃紧急避孕药有什么副作用| 休渔期是什么时候| 六月十五是什么星座| 动脉硬化挂什么科| 鱼头炖什么好吃| 知是什么意思| 犬瘟热是什么症状| 互诉衷肠是什么意思| 福荫是什么意思| 中医经方是什么意思| 小孩发烧可以吃什么水果| 胃溃疡能吃什么水果| me是什么基团| 奶酪是什么做的| 拉尿有泡泡是什么原因| 鲁迅真名叫什么| adhd是什么病| 硬不起来吃什么药| 右肺中叶索条什么意思| 肠胃炎什么症状| 名称是什么意思| 古代上班叫什么| 姜枣茶什么时间喝最好| 小厮是什么意思| 痣长在什么地方不好| ctp是什么意思| 甲亢属于什么科室| 望洋兴叹是什么意思| 头麻是什么病的前兆| 吃什么能瘦肚子| 寸是什么意思| 丁未年五行属什么| 水落石出开过什么生肖| 白头发越来越多是什么原因| 双氧水又叫什么名字| 无春年是什么意思| 鱼爱吃什么食物| 什么牌子的指甲油好| 什么帽不能戴| okr是什么| 六味地黄丸有什么功效| 上焦中焦下焦是什么| 风湿性心脏病吃什么药| 车厘子不能和什么一起吃| 心机是什么意思| 桃李满天下是什么生肖| 脱肛是什么症状| 为什么体重一直下降| 大德是什么意思| 婴儿第一次发烧叫什么| 哺乳期发烧吃什么药| 百度Jump to content

公鸡为什么会啄人

From Wikipedia, the free encyclopedia
(Redirected from Ordinal variable)
百度 第二部分共计8个税项,涉及美对华亿美元出口,包括猪肉及制品、回收铝等产品,拟加征25%的关税。

Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known.[1]:?2? These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946. The ordinal scale is distinguished from the nominal scale by having a ranking.[2] It also differs from the interval scale and ratio scale by not having category widths that represent equal increments of the underlying attribute.[3]

Examples of ordinal data

[edit]

A well-known example of ordinal data is the Likert scale. An example of a Likert scale is:[4]:?685?

Like Like Somewhat Neutral Dislike Somewhat Dislike
1 2 3 4 5

Examples of ordinal data are often found in questionnaires: for example, the survey question "Is your general health poor, reasonable, good, or excellent?" may have those answers coded respectively as 1, 2, 3, and 4. Sometimes data on an interval scale or ratio scale are grouped onto an ordinal scale: for example, individuals whose income is known might be grouped into the income categories $0–$19,999, $20,000–$39,999, $40,000–$59,999, ..., which then might be coded as 1, 2, 3, 4, .... Other examples of ordinal data include socioeconomic status, military ranks, and letter grades for coursework.[5]

Ways to analyse ordinal data

[edit]

Ordinal data analysis requires a different set of analyses than other qualitative variables. These methods incorporate the natural ordering of the variables in order to avoid loss of power.[1]:?88? Computing the mean of a sample of ordinal data is discouraged; other measures of central tendency, including the median or mode, are generally more appropriate.[6]

General

[edit]

Stevens (1946) argued that, because the assumption of equal distance between categories does not hold for ordinal data, the use of means and standard deviations for description of ordinal distributions and of inferential statistics based on means and standard deviations was not appropriate. Instead, positional measures like the median and percentiles, in addition to descriptive statistics appropriate for nominal data (number of cases, mode, contingency correlation), should be used.[3]:?678? Nonparametric methods have been proposed as the most appropriate procedures for inferential statistics involving ordinal data (e.g, Kendall's W, Spearman's rank correlation coefficient, etc.), especially those developed for the analysis of ranked measurements.[5]:?25–28? However, the use of parametric statistics for ordinal data may be permissible with certain caveats to take advantage of the greater range of available statistical procedures.[7][8][4]:?90?

Univariate statistics

[edit]

In place of means and standard deviations, univariate statistics appropriate for ordinal data include the median,[9]:?59–61? other percentiles (such as quartiles and deciles),[9]:?71? and the quartile deviation.[9]:?77? One-sample tests for ordinal data include the Kolmogorov-Smirnov one-sample test,[5]:?51–55? the one-sample runs test,[5]:?58–64? and the change-point test.[5]:?64–71?

Bivariate statistics

[edit]

In lieu of testing differences in means with t-tests, differences in distributions of ordinal data from two independent samples can be tested with Mann-Whitney,[9]:?259–264? runs,[9]:?253–259? Smirnov,[9]:?266–269? and signed-ranks[9]:?269–273? tests. Test for two related or matched samples include the sign test[5]:?80–87? and the Wilcoxon signed ranks test.[5]:?87–95? Analysis of variance with ranks[9]:?367–369? and the Jonckheere test for ordered alternatives[5]:?216–222? can be conducted with ordinal data in place of independent samples ANOVA. Tests for more than two related samples includes the Friedman two-way analysis of variance by ranks[5]:?174–183? and the Page test for ordered alternatives.[5]:?184–188? Correlation measures appropriate for two ordinal-scaled variables include Kendall's tau,[9]:?436–439? gamma,[9]:?442–443? rs,[9]:?434–436? and dyx/dxy.[9]:?443?

Regression applications

[edit]

Ordinal data can be considered as a quantitative variable. In logistic regression, the equation

is the model and c takes on the assigned levels of the categorical scale.[1]:?189? In regression analysis, outcomes (dependent variables) that are ordinal variables can be predicted using a variant of ordinal regression, such as ordered logit or ordered probit.

In multiple regression/correlation analysis, ordinal data can be accommodated using power polynomials and through normalization of scores and ranks.[10]

[edit]

Linear trends are also used to find associations between ordinal data and other categorical variables, normally in a contingency tables. A correlation r is found between the variables where r lies between -1 and 1. To test the trend, a test statistic:

is used where n is the sample size.[1]:?87?

R can be found by letting be the row scores and be the column scores. Let be the mean of the row scores while . Then is the marginal row probability and is the marginal column probability. R is calculated by:

Classification methods

[edit]

Classification methods have also been developed for ordinal data. The data are divided into different categories such that each observation is similar to others. Dispersion is measured and minimized in each group to maximize classification results. The dispersion function is used in information theory.[11]

Statistical models for ordinal data

[edit]

There are several different models that can be used to describe the structure of ordinal data.[12] Four major classes of model are described below, each defined for a random variable , with levels indexed by .

Note that in the model definitions below, the values of and will not be the same for all the models for the same set of data, but the notation is used to compare the structure of the different models.

Proportional odds model

[edit]

The most commonly used model for ordinal data is the proportional odds model, defined by where the parameters describe the base distribution of the ordinal data, are the covariates and are the coefficients describing the effects of the covariates.

This model can be generalized by defining the model using instead of , and this would make the model suitable for nominal data (in which the categories have no natural ordering) as well as ordinal data. However, this generalization can make it much more difficult to fit the model to the data.

Baseline category logit model

[edit]

The baseline category model is defined by

This model does not impose an ordering on the categories and so can be applied to nominal data as well as ordinal data.

Ordered stereotype model

[edit]

The ordered stereotype model is defined by where the score parameters are constrained such that .

This is a more parsimonious, and more specialised, model than the baseline category logit model: can be thought of as similar to .

The non-ordered stereotype model has the same form as the ordered stereotype model, but without the ordering imposed on . This model can be applied to nominal data.

Note that the fitted scores, , indicate how easy it is to distinguish between the different levels of . If then that indicates that the current set of data for the covariates do not provide much information to distinguish between levels and , but that does not necessarily imply that the actual values and are far apart. And if the values of the covariates change, then for that new data the fitted scores and might then be far apart.

Adjacent categories logit model

[edit]

The adjacent categories model is defined by although the most common form, referred to in Agresti (2010)[12] as the "proportional odds form" is defined by

This model can only be applied to ordinal data, since modelling the probabilities of shifts from one category to the next category implies that an ordering of those categories exists.

The adjacent categories logit model can be thought of as a special case of the baseline category logit model, where . The adjacent categories logit model can also be thought of as a special case of the ordered stereotype model, where , i.e. the distances between the are defined in advance, rather than being estimated based on the data.

Comparisons between the models

[edit]

The proportional odds model has a very different structure to the other three models, and also a different underlying meaning. Note that the size of the reference category in the proportional odds model varies with , since is compared to , whereas in the other models the size of the reference category remains fixed, as is compared to or .

[edit]

There are variants of all the models that use different link functions, such as the probit link or the complementary log-log link.

Statistical tests

[edit]

Differences in ordinal data can be tested using rank tests.

Visualization and display

[edit]

Ordinal data can be visualized in several different ways. Common visualizations are the bar chart or a pie chart. Tables can also be useful for displaying ordinal data and frequencies. Mosaic plots can be used to show the relationship between an ordinal variable and a nominal or ordinal variable.[13] A bump chart—a line chart that shows the relative ranking of items from one time point to the next—is also appropriate for ordinal data.[14]

Color or grayscale gradation can be used to represent the ordered nature of the data. A single-direction scale, such as income ranges, can be represented with a bar chart where increasing (or decreasing) saturation or lightness of a single color indicates higher (or lower) income. The ordinal distribution of a variable measured on a dual-direction scale, such as a Likert scale, could also be illustrated with color in a stacked bar chart. A neutral color (white or gray) might be used for the middle (zero or neutral) point, with contrasting colors used in the opposing directions from the midpoint, where increasing saturation or darkness of the colors could indicate categories at increasing distance from the midpoint.[15] Choropleth maps also use color or grayscale shading to display ordinal data.[16]

Example bar plot of opinion on defense spending
Example bump plot of opinion on defense spending by political party
Example mosaic plot of opinion on defense spending by political party
Example stacked bar plot of opinion on defense spending by political party

Applications

[edit]

The use of ordinal data can be found in most areas of research where categorical data are generated. Settings where ordinal data are often collected include the social and behavioral sciences and governmental and business settings where measurements are collected from persons by observation, testing, or questionnaires. Some common contexts for the collection of ordinal data include survey research;[17][18] and intelligence, aptitude, personality testing and decision-making.[2][4]:?89–90?

Calculation of 'Effect Size' (Cliff's Delta d) using ordinal data has been recommended as a measure of statistical dominance.[19]

See also

[edit]

References

[edit]
  1. ^ a b c d Agresti, Alan (2013). Categorical Data Analysis (3 ed.). Hoboken, New Jersey: John Wiley & Sons. ISBN 978-0-470-46363-5.
  2. ^ a b Ataei, Younes; Mahmoudi, Amin; Feylizadeh, Mohammad Reza; Li, Deng-Feng (January 2020). "Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making". Applied Soft Computing. 86: 105893. doi:10.1016/j.asoc.2019.105893. ISSN 1568-4946. S2CID 209928171.
  3. ^ a b Stevens, S. S. (1946). "On the Theory of Scales of Measurement". Science. New Series. 103 (2684): 677–680. Bibcode:1946Sci...103..677S. doi:10.1126/science.103.2684.677. PMID 17750512.
  4. ^ a b c Cohen, Ronald Jay; Swerdik, Mark E.; Phillips, Suzanne M. (1996). Psychological Testing and Assessment: An Introduction to Tests and Measurement (3rd ed.). Mountain View, CA: Mayfield. pp. 685. ISBN 1-55934-427-X.
  5. ^ a b c d e f g h i j Siegel, Sidney; Castellan, N. John Jr. (1988). Nonparametric Statistics for the Behavioral Sciences (2nd ed.). Boston: McGraw-Hill. pp. 25–26. ISBN 0-07-057357-3.
  6. ^ Jamieson, Susan (December 2004). "Likert scales: how to (ab)use them" (PDF). Medical Education. 38 (12): 1212–1218. doi:10.1111/j.1365-2929.2004.02012.x. PMID 15566531. S2CID 42509064.
  7. ^ Sarle, Warren S. (Sep 14, 1997). "Measurement theory: Frequently asked questions". Archived from the original on 2025-08-07.
  8. ^ van Belle, Gerald (2002). Statistical Rules of Thumb. New York: John Wiley & Sons. pp. 23–24. ISBN 0-471-40227-3.
  9. ^ a b c d e f g h i j k l Blalock, Hubert M. Jr. (1979). Social Statistics (Rev. 2nd ed.). New York: McGraw-Hill. ISBN 0-07-005752-4.
  10. ^ Cohen, Jacob; Cohen, Patricia (1983). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, New Jersey: Lawrence Erlbaum Associates. p. 273. ISBN 0-89859-268-2.
  11. ^ Laird, Nan M. (1979). "A Note on Classifying Ordinal-Scale Data". Sociological Methodology. 10: 303–310. doi:10.2307/270775. JSTOR 270775.
  12. ^ a b Agresti, Alan (2010). Analysis of Ordinal Categorical Data (2nd ed.). Hoboken, New Jersey: Wiley. ISBN 978-0470082898.
  13. ^ "Plotting Techniques".
  14. ^ Berinato, Scott (2016). Good Charts: The HBR Guide to Making Smarter, More Persuasive Data Visualizations. Boston: Harvard Business Review Press. p. 228. ISBN 978-1633690707.
  15. ^ Kirk, Andy (2016). Data Visualisation: A Handbook for Data Driven Design (1st ed.). London: SAGE. p. 269. ISBN 978-1473912144.
  16. ^ Cairo, Alberto (2016). The Truthful Art: Data, Charts, and Maps for Communication (1st ed.). San Francisco: New Riders. p. 280. ISBN 978-0321934079.
  17. ^ Alwin, Duane F. (2010). "Assessing the Reliability and Validity of Survey Measures". In Marsden, Peter V.; Wright, James D. (eds.). Handbook of Survey Research. Howard House, Wagon Lane, Bingley BD16 1WA, UK: Emerald House. p. 420. ISBN 978-1-84855-224-1.{{cite book}}: CS1 maint: location (link)
  18. ^ Fowler, Floyd J. Jr. (1995). Improving Survey Questions: Design and Evaluation. Thousand Oaks, CA: Sage. pp. 156–165. ISBN 0-8039-4583-3.
  19. ^ Cliff, Norman (November 1993). "Dominance statistics: Ordinal analyses to answer ordinal questions". Psychological Bulletin. 114 (3): 494–509. doi:10.1037/0033-2909.114.3.494. ISSN 1939-1455.

Further reading

[edit]
  • Agresti, Alan (2010). Analysis of Ordinal Categorical Data (2nd ed.). Hoboken, New Jersey: Wiley. ISBN 978-0470082898.
男人吃洋葱有什么好处 餐饮行业五行属什么 icloud是什么 没吃多少东西但肚子很胀是什么 猫的五行属什么
什么药能治阳痿早泄 杭州有什么 泔水是什么意思 妇检是检查什么 前列腺饱满是什么意思
崛起是什么意思 香薰是什么 psd是什么意思 精索静脉曲张是什么意思 月经前腰疼的厉害是什么原因
ogtt是什么意思 少将是什么级别 万马奔腾什么意思 勒索是什么意思 普字五行属什么
猫抓病是什么病hcv8jop0ns9r.cn 频繁大便是什么原因hcv8jop8ns6r.cn LOP是什么胎位hcv7jop6ns6r.cn 挣扎是什么意思hcv9jop6ns3r.cn vc什么时候吃最好hcv8jop6ns8r.cn
头疼发热是什么原因hcv8jop1ns2r.cn 靶向是什么意思hcv9jop1ns3r.cn 奶水不足是什么原因造成的hcv7jop4ns6r.cn 真言是什么意思hcv9jop6ns7r.cn 过敏看什么科bjhyzcsm.com
狮子男和什么星座最配hcv8jop8ns3r.cn 什么是性高潮520myf.com 口苦口臭口干吃什么药hcv8jop4ns5r.cn 属牛的生什么属相的孩子好hcv8jop7ns9r.cn 嘴巴发苦吃什么药hcv9jop2ns3r.cn
男人吃什么补肾hcv8jop3ns4r.cn 常态是什么意思hcv8jop9ns7r.cn 什么忙什么乱hcv8jop7ns6r.cn 吃什么能快速减肥qingzhougame.com 夏天白鸽煲什么汤最好tiangongnft.com
百度