打饱嗝是什么原因造成的| 仓鼠咬笼子是什么原因| 前列腺不能吃什么食物| 点卯是什么意思| 阳痿是什么症状| 肝硬化早期有什么症状| 追龙什么意思| 流黄鼻涕吃什么药| 35年属什么生肖| 心衰挂什么科| 开店需要什么手续| 缺碘有什么症状| 属鸡适合佩戴什么饰品| 新生儿屁多是什么原因| 螃蟹用什么呼吸| 看脱发应该挂什么科| 一片哗然是什么意思| 吃什么降血糖快| 拉屎有血是什么原因| 64岁属什么生肖| 其可以组什么词| 为什么井盖是圆的| 金丝檀木是什么木头| 誉之曰的之是什么意思| 宫颈口大是什么原因| 女人吃鹿茸有什么好处| 铀是什么| 什么情况属于骗婚| 肉瘤是什么| 每个月月经都提前是什么原因| 人流手术前需要注意什么| 嗜睡是什么症状| 晚上睡眠不好有什么办法可以解决| 外科主要看什么病| 空调什么牌子最好| 肿瘤cr是什么意思| 备孕需要吃什么| 承欢膝下什么意思| 7号来的月经什么时候是排卵期| 碧文圆顶是什么意思| 便秘是什么症状| 金鸡独立什么意思| 息风止痉是什么意思| 脓包用什么药膏| 3.1号是什么星座| 玉对人身体健康有什么好处| 挂号是什么意思| 爸爸的弟弟叫什么| 羽丝绒是什么材料| 梦见女婴儿是什么意思| 小松鼠吃什么食物| 肺结节吃什么药能散结| 疮疖是什么样子图片| 谷草谷丙是什么| 电气火灾用什么灭火| 中国最长的河流是什么河| 为什么屎是黑色的| 低血压不能吃什么食物| 植物光合作用产生什么| 指数是什么| 什么的雨| 滴虫性阴炎用什么药效果最好| 口臭口苦吃什么药最好| 脉细是什么意思| 男人喝什么汤补肾壮阳| 蜱虫怕什么| 农历五月十九是什么日子| 嫡长子是什么意思| 四件套包括什么| 为的笔顺是什么| 皮肤黄的人适合穿什么颜色的衣服| 夜间抽搐的原因是什么| 茹什么饮什么| 第一次表白送什么花| 为什么会莫名其妙流鼻血| 甲肝是什么病| 丨什么意思| covu药片是什么药| 少一颗牙齿有什么影响| 为什么讨厌犹太人| 乳腺纤维瘤有什么症状表现| 女人阴虚火旺吃什么药| 致什么意思| 甲状腺结节3类什么意思| 什么变化| 大逆不道什么意思| 总是拉稀是什么原因| 烧心吃什么马上能缓解| 手指麻是什么原因| 总胆汁酸高是什么原因| 口腔脱皮是什么原因引起的| 口水分泌过多是什么原因| 什么的果子| 身份证上x代表什么| 一吃东西就牙疼是什么原因引起的| 备孕是什么意思| 01年的属什么| 40min是什么意思| 巨蟹座幸运花是什么| 巩固是什么意思| 歌字五行属什么| 安琪儿是什么意思| 明知故犯的故是什么意思| 藿香正气水不能和什么药一起吃| lpp什么意思| 陈酿是什么意思| 心室早复极是什么意思| 江团鱼是什么鱼| 心火大吃什么能清火| 膝盖积水是什么原因造成的| 火加良念什么| 胆囊炎是什么症状| 结膜炎吃什么消炎药| 什么的雷雨| vb6是什么药| 核酸是什么| 冰糖是什么做的| 孕妇胃疼吃什么药| 弥漫性脂肪肝什么意思| 什么硬币最值钱| 尿液茶色是什么原因| 狗怀孕有什么症状| 苹果熬水喝有什么功效| 西泮片是什么药| 布朗是什么水果| 胆固醇高吃什么食物好| 吃了拉肚子的药叫什么| 人到中年为什么会发胖| 心气虚吃什么中成药| 特殊门诊是什么意思| 穿山甲吃什么| 吃什么能让胸变大| 好马不吃回头草是什么意思| 自强是什么意思| 背道而驰什么意思| 长痘要忌口什么东西| 密度单位是什么| 修罗道是什么意思| 基础代谢率是什么意思| TB是什么缩写| 心室早复极是什么意思| 翻江倒海是什么生肖| 吃什么增强抵抗力| flair是什么意思| 尿检潜血是什么意思| 肤浅什么意思| vam是什么意思| 狮子住在什么地方| 三栖明星是什么意思| 汗脚是什么原因引起的| 率真是什么意思| 潜血十一是什么意思| 寒风吹起细雨迷离是什么歌| 什么情况下需要会诊| 今年什么生肖年| 猴跟什么生肖相冲| 肝脾肿大是什么症状| 高血压喝什么茶| 叔叔老婆叫什么| 什么的雷锋| 心脏吃什么药最好| 嗯嗯什么意思| 猫代表什么象征意义| 普通的近义词是什么| 水煮鱼片用什么鱼| 细菌性阴道炎用什么洗液| 400能上什么大学| 幽门螺旋杆菌挂什么科| 各位同仁用在什么场合| 脾胃不和吃什么中成药| 胖大海是什么东西| 头孢呋辛钠主治什么病| 生吃西红柿有什么好处和坏处| 12年义务教育什么时候实行| 什么叫幽门螺旋杆菌| 女生下面是什么样的| array是什么意思| 吃阿胶对女人有什么好处| mixblu是什么牌子| 妨子痣是什么意思| 头发拉焦了有什么补救| 什么是碱性水果| 胡思乱想是什么意思| 眼白有点黄是什么原因| 眼红是什么意思| 仙代表什么生肖| 什么的鸟窝| 槟榔中间的膏是什么| 日本兵为什么不怕死| 总是嗜睡是什么原因| 黑今念什么| 肿瘤手术后吃什么好| 仙鹤代表什么生肖| 爱新觉罗是什么意思| 洒水车的音乐是什么歌| 静脉曲张有什么症状| 为什么海水是咸的| 脚气是什么样的图片| 凌五行属性是什么| 肚脐眼上面痛是什么原因引起的| 侏儒症是什么原因引起的| 病案首页是什么| 羟氯喹是什么药| 什么是阴吹| 猝死是什么意思| 什么血型最招蚊子咬| 为什么眼睛老是痒| 西瓜可以做成什么美食| 补睾丸吃什么药最好| 水洗棉是什么面料| 售馨是什么意思| 周杰伦什么学历| 虬是什么动物| 牙结石用什么牙膏最好| 什么情况下容易怀孕| 属虎的幸运色是什么颜色| 失语是什么意思| 女人脖子后面有痣代表什么| 雄激素过高是什么意思| pes是什么材质| 脾功能亢进是什么意思| 黄芪什么味道| 肝阳性是什么意思| 深化是什么意思| 77年的蛇是什么命| 上厕所出血是什么原因| 脚底肿是什么原因引起的| 尿特别多是什么原因| 膀胱炎吃什么药| 不是经期有少量出血是什么原因| 什么是特应性皮炎| 女生右眼睛老是跳是什么原因| pro是什么的缩写| 什么东西补血| 偈语是什么意思| 脚后跟痒是什么原因| 欲钱知吃月饼是什么生肖| 巨细胞病毒igm阳性是什么意思| 头皮痒是什么原因| 乳腺彩超什么时候做最准确| afi是胎儿的什么意思| 3月6号是什么星座的| 口幼读什么| 指标到校是什么意思| gd是什么意思| 眼底筛查是检查什么| 8月出生的是什么星座| 张家界为什么叫张家界| 三长两短是什么意思| 包皮炎用什么软膏| 淋症是什么意思| 验血糖挂什么科| 麦子什么时候收割| 月牙是什么意思| 梦到怀孕了是什么预兆| 67是什么意思| 胃烂了是什么病严重吗| 非浅表性胃炎是什么意思| 王字旁的字跟什么有关| circle什么意思| 疯马皮是什么皮| 最好的烟是什么牌子| 车加失读什么| 嘴唇轻微发麻什么病兆| 百度Jump to content

用车当你坐在着火的公交车里 命悬一线 该出手

From Wikipedia, the free encyclopedia
(Redirected from Automated theorem prover)
百度 "姜君说,随着80后逐渐成为社会中坚,90后快速崛起,消费市场的年轻化已经成为主流。

Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major motivating factor for the development of computer science.

Logical foundations

[edit]

While the roots of formalized logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalized mathematics. Frege's Begriffsschrift (1879) introduced both a complete propositional calculus and what is essentially modern predicate logic.[1] His Foundations of Arithmetic, published in 1884,[2] expressed (parts of) mathematics in formal logic. This approach was continued by Russell and Whitehead in their influential Principia Mathematica, first published 1910–1913,[3] and with a revised second edition in 1927.[4] Russell and Whitehead thought they could derive all mathematical truth using axioms and inference rules of formal logic, in principle opening up the process to automation. In 1920, Thoralf Skolem simplified a previous result by Leopold L?wenheim, leading to the L?wenheim–Skolem theorem and, in 1930, to the notion of a Herbrand universe and a Herbrand interpretation that allowed (un)satisfiability of first-order formulas (and hence the validity of a theorem) to be reduced to (potentially infinitely many) propositional satisfiability problems.[5]

In 1929, Moj?esz Presburger showed that the first-order theory of the natural numbers with addition and equality (now called Presburger arithmetic in his honor) is decidable and gave an algorithm that could determine if a given sentence in the language was true or false.[6][7]

However, shortly after this positive result, Kurt G?del published On Formally Undecidable Propositions of Principia Mathematica and Related Systems (1931), showing that in any sufficiently strong axiomatic system, there are true statements that cannot be proved in the system. This topic was further developed in the 1930s by Alonzo Church and Alan Turing, who on the one hand gave two independent but equivalent definitions of computability, and on the other gave concrete examples of undecidable questions.

First implementations

[edit]

In 1954, Martin Davis programmed Presburger's algorithm for a JOHNNIAC vacuum-tube computer at the Institute for Advanced Study in Princeton, New Jersey. According to Davis, "Its great triumph was to prove that the sum of two even numbers is even".[7][8] More ambitious was the Logic Theorist in 1956, a deduction system for the propositional logic of the Principia Mathematica, developed by Allen Newell, Herbert A. Simon and J. C. Shaw. Also running on a JOHNNIAC, the Logic Theorist constructed proofs from a small set of propositional axioms and three deduction rules: modus ponens, (propositional) variable substitution, and the replacement of formulas by their definition. The system used heuristic guidance, and managed to prove 38 of the first 52 theorems of the Principia.[7]

The "heuristic" approach of the Logic Theorist tried to emulate human mathematicians, and could not guarantee that a proof could be found for every valid theorem even in principle. In contrast, other, more systematic algorithms achieved, at least theoretically, completeness for first-order logic. Initial approaches relied on the results of Herbrand and Skolem to convert a first-order formula into successively larger sets of propositional formulae by instantiating variables with terms from the Herbrand universe. The propositional formulas could then be checked for unsatisfiability using a number of methods. Gilmore's program used conversion to disjunctive normal form, a form in which the satisfiability of a formula is obvious.[7][9]

Decidability of the problem

[edit]

Depending on the underlying logic, the problem of deciding the validity of a formula varies from trivial to impossible. For the common case of propositional logic, the problem is decidable but co-NP-complete, and hence only exponential-time algorithms are believed to exist for general proof tasks. For a first-order predicate calculus, G?del's completeness theorem states that the theorems (provable statements) are exactly the semantically valid well-formed formulas, so the valid formulas are computably enumerable: given unbounded resources, any valid formula can eventually be proven. However, invalid formulas (those that are not entailed by a given theory), cannot always be recognized.

The above applies to first-order theories, such as Peano arithmetic. However, for a specific model that may be described by a first-order theory, some statements may be true but undecidable in the theory used to describe the model. For example, by G?del's incompleteness theorem, we know that any consistent theory whose axioms are true for the natural numbers cannot prove all first-order statements true for the natural numbers, even if the list of axioms is allowed to be infinite enumerable. It follows that an automated theorem prover will fail to terminate while searching for a proof precisely when the statement being investigated is undecidable in the theory being used, even if it is true in the model of interest. Despite this theoretical limit, in practice, theorem provers can solve many hard problems, even in models that are not fully described by any first-order theory (such as the integers).

[edit]

A simpler, but related, problem is proof verification, where an existing proof for a theorem is certified valid. For this, it is generally required that each individual proof step can be verified by a primitive recursive function or program, and hence the problem is always decidable.

Since the proofs generated by automated theorem provers are typically very large, the problem of proof compression is crucial, and various techniques aiming at making the prover's output smaller, and consequently more easily understandable and checkable, have been developed.

Proof assistants require a human user to give hints to the system. Depending on the degree of automation, the prover can essentially be reduced to a proof checker, with the user providing the proof in a formal way, or significant proof tasks can be performed automatically. Interactive provers are used for a variety of tasks, but even fully automatic systems have proved a number of interesting and hard theorems, including at least one that has eluded human mathematicians for a long time, namely the Robbins conjecture.[10][11] However, these successes are sporadic, and work on hard problems usually requires a proficient user.

Another distinction is sometimes drawn between theorem proving and other techniques, where a process is considered to be theorem proving if it consists of a traditional proof, starting with axioms and producing new inference steps using rules of inference. Other techniques would include model checking, which, in the simplest case, involves brute-force enumeration of many possible states (although the actual implementation of model checkers requires much cleverness, and does not simply reduce to brute force).

There are hybrid theorem proving systems that use model checking as an inference rule. There are also programs that were written to prove a particular theorem, with a (usually informal) proof that if the program finishes with a certain result, then the theorem is true. A good example of this was the machine-aided proof of the four color theorem, which was very controversial as the first claimed mathematical proof that was essentially impossible to verify by humans due to the enormous size of the program's calculation (such proofs are called non-surveyable proofs). Another example of a program-assisted proof is the one that shows that the game of Connect Four can always be won by the first player.

Applications

[edit]

Commercial use of automated theorem proving is mostly concentrated in integrated circuit design and verification. Since the Pentium FDIV bug, the complicated floating point units of modern microprocessors have been designed with extra scrutiny. AMD, Intel and others use automated theorem proving to verify that division and other operations are correctly implemented in their processors.[12]

Other uses of theorem provers include program synthesis, constructing programs that satisfy a formal specification.[13] Automated theorem provers have been integrated with proof assistants, including Isabelle/HOL.[14]

Applications of theorem provers are also found in natural language processing and formal semantics, where they are used to analyze discourse representations.[15][16]

First-order theorem proving

[edit]

In the late 1960s agencies funding research in automated deduction began to emphasize the need for practical applications.[citation needed] One of the first fruitful areas was that of program verification whereby first-order theorem provers were applied to the problem of verifying the correctness of computer programs in languages such as Pascal, Ada, etc. Notable among early program verification systems was the Stanford Pascal Verifier developed by David Luckham at Stanford University.[17][18][19] This was based on the Stanford Resolution Prover also developed at Stanford using John Alan Robinson's resolution principle. This was the first automated deduction system to demonstrate an ability to solve mathematical problems that were announced in the Notices of the American Mathematical Society before solutions were formally published.[citation needed]

First-order theorem proving is one of the most mature subfields of automated theorem proving. The logic is expressive enough to allow the specification of arbitrary problems, often in a reasonably natural and intuitive way. On the other hand, it is still semi-decidable, and a number of sound and complete calculi have been developed, enabling fully automated systems.[20] More expressive logics, such as higher-order logics, allow the convenient expression of a wider range of problems than first-order logic, but theorem proving for these logics is less well developed.[21][22]

Relationship with SMT

[edit]

There is substantial overlap between first-order automated theorem provers and SMT solvers. Generally, automated theorem provers focus on supporting full first-order logic with quantifiers, whereas SMT solvers focus more on supporting various theories (interpreted predicate symbols). ATPs excel at problems with lots of quantifiers, whereas SMT solvers do well on large problems without quantifiers.[23] The line is blurry enough that some ATPs participate in SMT-COMP, while some SMT solvers participate in CASC.[24]

Benchmarks, competitions, and sources

[edit]

The quality of implemented systems has benefited from the existence of a large library of standard benchmark examples—the Thousands of Problems for Theorem Provers (TPTP) Problem Library[25]—as well as from the CADE ATP System Competition (CASC), a yearly competition of first-order systems for many important classes of first-order problems.

Some important systems (all have won at least one CASC competition division) are listed below.

The Theorem Prover Museum[27] is an initiative to conserve the sources of theorem prover systems for future analysis, since they are important cultural/scientific artefacts. It has the sources of many of the systems mentioned above.

[edit]

Software systems

[edit]
Comparison
Name License type Web service Library Standalone Last update (YYYY-mm-dd format)
ACL2 3-clause BSD No No Yes May 2019
Prover9/Otter Public Domain Via System on TPTP Yes No 2009
Jape GPLv2 Yes Yes No May 15, 2015
PVS GPLv2 No Yes No January 14, 2013
EQP ? No Yes No May 2009
PhoX ? No Yes No September 28, 2017
E GPL Via System on TPTP No Yes July 4, 2017
SNARK Mozilla Public License 1.1 No Yes No 2012
Vampire Vampire License Via System on TPTP Yes Yes December 14, 2017
Theorem Proving System (TPS) TPS Distribution Agreement No Yes No February 4, 2012
SPASS FreeBSD license Yes Yes Yes November 2005
IsaPlanner GPL No Yes Yes 2007
KeY GPL Yes Yes Yes October 11, 2017
Z3 Theorem Prover MIT License Yes Yes Yes November 19, 2019

Free software

[edit]

Proprietary software

[edit]

See also

[edit]

Notes

[edit]
  1. ^ Frege, Gottlob (1879). Begriffsschrift. Verlag Louis Neuert.
  2. ^ Frege, Gottlob (1884). Die Grundlagen der Arithmetik (PDF). Breslau: Wilhelm Kobner. Archived from the original (PDF) on 2025-08-07. Retrieved 2025-08-07.
  3. ^ Russell, Bertrand; Whitehead, Alfred North (1910–1913). Principia Mathematica (1st ed.). Cambridge University Press.
  4. ^ Russell, Bertrand; Whitehead, Alfred North (1927). Principia Mathematica (2nd ed.). Cambridge University Press.
  5. ^ Herbrand, J. (1930). Recherches sur la théorie de la démonstration (PhD) (in French). University of Paris.
  6. ^ Presburger, Moj?esz (1929). "über die Vollst?ndigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt". Comptes Rendus du I Congrès de Mathématiciens des Pays Slaves. Warszawa: 92–101.
  7. ^ a b c d Davis, Martin (2001). "The Early History of Automated Deduction". Robinson & Voronkov 2001. Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  8. ^ Bibel, Wolfgang (2007). "Early History and Perspectives of Automated Deduction" (PDF). Ki 2007. LNAI (4667). Springer: 2–18. Archived (PDF) from the original on 2025-08-07. Retrieved 2 September 2012.
  9. ^ Gilmore, Paul (1960). "A proof procedure for quantification theory: its justification and realisation". IBM Journal of Research and Development. 4: 28–35. doi:10.1147/rd.41.0028.
  10. ^ McCune, W. W. (1997). "Solution of the Robbins Problem". Journal of Automated Reasoning. 19 (3): 263–276. doi:10.1023/A:1005843212881. S2CID 30847540.
  11. ^ Kolata, Gina (December 10, 1996). "Computer Math Proof Shows Reasoning Power". The New York Times. Retrieved 2025-08-07.
  12. ^ Goel, Shilpi; Ray, Sandip (2022), Chattopadhyay, Anupam (ed.), "Microprocessor Assurance and the Role of Theorem Proving", Handbook of Computer Architecture, Singapore: Springer Nature Singapore, pp. 1–43, doi:10.1007/978-981-15-6401-7_38-1, ISBN 978-981-15-6401-7, retrieved 2025-08-07
  13. ^ Basin, D.; Deville, Y.; Flener, P.; Hamfelt, A.; Fischer Nilsson, J. (2004). "Synthesis of programs in computational logic". In M. Bruynooghe and K.-K. Lau (ed.). Program Development in Computational Logic. LNCS. Vol. 3049. Springer. pp. 30–65. CiteSeerX 10.1.1.62.4976.
  14. ^ Meng, Jia; Paulson, Lawrence C. (2025-08-07). "Translating Higher-Order Clauses to First-Order Clauses". Journal of Automated Reasoning. 40 (1): 35–60. doi:10.1007/s10817-007-9085-y. ISSN 1573-0670. S2CID 7716709.
  15. ^ Bos, Johan. "Wide-coverage semantic analysis with boxer." Semantics in text processing. step 2008 conference proceedings. 2008.
  16. ^ Muskens, Reinhard. "Combining Montague semantics and discourse representation." Linguistics and philosophy (1996): 143-186.
  17. ^ Luckham, David C.; Suzuki, Norihisa (Mar 1976). Automatic Program Verification V: Verification-Oriented Proof Rules for Arrays, Records, and Pointers (Technical Report AD-A027 455). Defense Technical Information Center. Archived from the original on August 12, 2021.
  18. ^ Luckham, David C.; Suzuki, Norihisa (Oct 1979). "Verification of Array, Record, and Pointer Operations in Pascal". ACM Transactions on Programming Languages and Systems. 1 (2): 226–244. doi:10.1145/357073.357078. S2CID 10088183.
  19. ^ Luckham, D.; German, S.; von Henke, F.; Karp, R.; Milne, P.; Oppen, D.; Polak, W.; Scherlis, W. (1979). Stanford Pascal verifier user manual (Technical report). Stanford University. CS-TR-79-731.
  20. ^ Loveland, D. W. (1986). "Automated theorem proving: Mapping logic into AI". Proceedings of the ACM SIGART international symposium on Methodologies for intelligent systems. Knoxville, Tennessee, United States: ACM Press. p. 224. doi:10.1145/12808.12833. ISBN 978-0-89791-206-8. S2CID 14361631.
  21. ^ Kerber, Manfred. "How to prove higher order theorems in first order logic." (1999).
  22. ^ Benzmüller, Christoph, et al. "LEO-II-a cooperative automatic theorem prover for classical higher-order logic (system description)." International Joint Conference on Automated Reasoning. Berlin, Germany and Heidelberg: Springer, 2008.
  23. ^ Blanchette, Jasmin Christian; B?hme, Sascha; Paulson, Lawrence C. (2025-08-07). "Extending Sledgehammer with SMT Solvers". Journal of Automated Reasoning. 51 (1): 109–128. doi:10.1007/s10817-013-9278-5. ISSN 1573-0670. S2CID 5389933. ATPs and SMT solvers have complementary strengths. The former handle quantifiers more elegantly, whereas the latter excel on large, mostly ground problems.
  24. ^ Weber, Tjark; Conchon, Sylvain; Déharbe, David; Heizmann, Matthias; Niemetz, Aina; Reger, Giles (2025-08-07). "The SMT Competition 2015–2018". Journal on Satisfiability, Boolean Modeling and Computation. 11 (1): 221–259. doi:10.3233/SAT190123. In recent years, we have seen a blurring of lines between SMT-COMP and CASC with SMT solvers competing in CASC and ATPs competing in SMT-COMP.
  25. ^ Sutcliffe, Geoff. "The TPTP Problem Library for Automated Theorem Proving". Retrieved 15 July 2019.
  26. ^ "History". vprover.github.io.
  27. ^ "The Theorem Prover Museum". Michael Kohlhase. Retrieved 2025-08-07.
  28. ^ Bundy, Alan (1999). The automation of proof by mathematical induction (PDF) (Technical report). Informatics Research Report. Vol. 2. Division of Informatics, University of Edinburgh. hdl:1842/3394.
  29. ^ Gabbay, Dov M., and Hans Jürgen Ohlbach. "Quantifier elimination in second-order predicate logic." (1992).

References

[edit]
[edit]
吃什么对胃最好 浮木是什么意思 饶舌是什么意思 金融bp是什么意思 立秋什么意思
胡说八道是什么意思 老放屁什么原因 异麦芽酮糖醇是什么 armour是什么牌子 凯乐石属于什么档次
food什么意思 葡萄套袋前打什么药 桂林是什么地貌 逝者如斯夫是什么意思 自闭症是什么
阴毛有什么用 什么是时装 亚硝酸盐是什么 头发老是出油是什么原因 吃什么吐什么喝水都吐怎么办
山楂可以和什么一起泡水喝hcv7jop4ns8r.cn 一般手脚慢进什么工厂hcv8jop9ns6r.cn 乳头很痒是什么原因hcv8jop6ns8r.cn 焦虑症吃什么中成药能根治hcv9jop5ns7r.cn 女人喝甘草水有什么好处hcv9jop2ns4r.cn
女排精神是什么hcv9jop2ns7r.cn 心梗是什么原因造成的hcv8jop7ns6r.cn 背沟深代表什么0297y7.com 往生咒是什么意思hcv8jop8ns5r.cn 乏了是什么意思hcv8jop9ns1r.cn
老年人吃什么钙片补钙好hcv8jop6ns9r.cn 办护照照片有什么要求hcv8jop2ns4r.cn 大脑记忆力下降是什么原因hcv8jop2ns3r.cn 1974年属虎是什么命hcv8jop9ns0r.cn 结扎对女人有什么伤害hcv8jop6ns1r.cn
海棠花什么时候开hcv9jop3ns0r.cn 失信人是什么意思hcv8jop3ns7r.cn 心有余悸是什么意思hcv9jop2ns6r.cn 女人一般什么时候容易怀孕hcv8jop0ns4r.cn 洋葱和什么相克hcv9jop0ns9r.cn
百度