短效避孕药什么时候吃| hk什么意思| 直肠ca代表什么病| 吉祥如意是什么意思| 静脉曲张有什么危害| 一九八四年属什么生肖| 羊肉不能和什么一起吃| 忍者神龟是什么意思| 麻烦的意思是什么| 射精无力是什么原因| 爱是什么感觉| 纠缠什么意思| Polo什么意思| 农历4月14日是什么星座| 吃什么变白| 开放性神经管缺陷是什么意思| 锦囊妙计是什么意思| 什么牛不吃草| 起水痘不能吃什么食物| 胎动突然减少是什么原因| 人工授精是什么意思| 鱼腥草泡水喝有什么功效| hov是什么意思| 4.12是什么星座| 鸡同鸭讲是什么意思| 静脉曲张不治疗会有什么后果| 胃酸有什么办法缓解| 大祭司是什么意思| 孩子手抖是什么原因| 同房是什么意思| 牙周炎用什么漱口水好| 小孩老放屁是什么原因| 牙黄是什么原因引起的| 发烧打什么针| 谷氨酰基转移酶高是什么原因| 衣服为什么会发霉| 正襟危坐什么意思| 秋葵有什么营养价值| 1969年属鸡是什么命| 梦见发工资了是什么意思| 眉毛白是什么原因引起的| 为什么会胃酸| 拉格啤酒是什么意思| 颈部淋巴结挂什么科| 胃溃疡a2期是什么意思| 什么中生什么| 黄痰吃什么药最好| 飞沙走石是什么意思| 涉黑是什么意思| 人体最大的排毒器官是什么| 长沙有什么大学| 熬夜喝什么汤比较好| 甲沟炎用什么药好| 钾在人体中起什么作用| 鹅蛋不能和什么一起吃| 怀孕前检查什么项目内容| 鹦鹉拉稀吃什么药| 梦见很多蜘蛛是什么意思| 紫水晶五行属什么| 厨娘是什么意思| 榴莲有什么品种| 子宫内膜脱落是什么原因| 什么样的脸型有福| 天机不可泄露是什么意思| 长孙皇后为什么叫观音婢| 透析病人吃什么水果好| 下眼袋浮肿是什么原因| 前瞻是什么意思| 肌张力高有什么表现| 肠粉为什么叫肠粉| 科员是什么职务| 眼皮跳是什么原因引起的| 脂肪肝是什么病| 干预是什么意思| 滋养细胞疾病是什么病| 美人盂是什么意思| 什么是保健品| 李世民是什么民族| 黄河水为什么是黄的| 指甲断裂是什么原因| 子宫形态失常是什么意思| 小孩肚脐眼周围疼是什么原因| 剑兰什么时候开花| 完全性右束支阻滞是什么意思| 住院医师是什么职称| 一加一笔变成什么字| 什么命要承受丧子之痛| 极性什么意思| 痛风忌吃什么| 三个牛读什么字| 1972年出生属什么生肖| 不免是什么意思| 命名是什么意思| 口腔医学是什么| 嗜酸性粒细胞偏高是什么意思| 晨勃是什么| 脾胃虚寒有什么症状| 梦见自己拉粑粑是什么意思| 疱疹吃什么药见效快| 检查脖子挂什么科| 如果你是什么那快乐就是什么| 新生儿为什么会有黄疸| 无创dna是检查什么的| 河豚吃什么食物| 两个口是什么字| 健脾去湿吃什么药| 老鸨是什么意思| 白介素高是什么原因| 头发为什么会白| 五液是指什么| 手指关节痛是什么原因| 肛门潮湿是什么情况| 坐骨神经痛吃什么药好得快| 什么东西倒立后会增加一半| 不吃香菜什么意思| 洪七公什么生肖| 1.17是什么星座| 取活检是什么意思| 肚子胀气吃什么药好| 血氧低吃什么药| 牙套什么年龄戴合适| 头发掉得厉害是什么原因| 为什么叫川普| 层出不穷什么意思| 推什么出什么| 处女座男和什么星座最配| 什么手串最好| 灰指甲不治疗有什么后果| 转的第三笔是什么| 梦见到处都是蛇预示着什么| 什么样的人容易猝死| 所向披靡是什么意思| 单核细胞计数偏高是什么意思| 甲亢与甲减有什么区别| 什么入什么口| 什么是杀青| 吃生蚝有什么好处| 泰能是什么药| 刀子是什么意思| 声嘶力竭是什么意思| 前列腺炎要吃什么药| 葡萄糖酸钙锌口服溶液什么时候喝| 性早熟有什么症状| 失眠睡不着是什么病| 打是什么意思| 溺爱的意思是什么| 皮秒是什么| 大便为什么是绿色的| 脖子凉是什么原因| iq是什么意思| 高密度脂蛋白胆固醇偏高是什么意思| 处cp是什么意思| 舌苔发黄是什么病| 水马是什么| 秘辛是什么意思| hazzys是什么牌子价格| 为什么一直睡不着| 阴虚内热吃什么中成药| 调和营卫是什么意思| 桂林有什么好玩的景点| 庶是什么意思| 右下腹是什么器官| 左手大拇指抖动是什么原因| 孕育是什么意思| hpv感染有什么症状| 什么东西补气血效果最好| mcm是什么意思| 黄色配什么颜色| 牙齿脱矿是什么意思| 肥皂剧是什么意思| 毛主席的女儿为什么姓李| 脸麻是什么原因| 厚黑学的精髓是什么| 坐骨神经吃什么药效果最好| 什么是药学| 绿洲是什么意思| 甲状腺低回声什么意思| 睡几个小时就醒了是什么原因| 为什么睡不醒| 咳嗽应该挂什么科| 阳历1月份是什么星座| 宇宙的中心是什么| 灰指甲是什么样的| 什么叫流产| 女人亏气亏血吃什么补的快| 龙虾和什么不能一起吃| 什么秒必争| 继续近义词是什么| 金黄金黄的什么| 主动脉迂曲是什么意思| 龟头瘙痒用什么药膏| 梦见着火是什么预兆| 罗西尼手表什么档次| 什么是hr| ppi下降意味着什么| 长明灯是什么意思| 为什么不吃猪肉| 甲状腺肿大吃什么药| 阳寿是什么意思| 美国的国球是什么| 尿酸高吃什么能降| app有什么用途| 瑾字是什么意思| 孩子喝什么牛奶有助于长高| 心肌梗塞是什么症状| 血竭是什么东西| 什么是孽缘| 喝蜂蜜水不能吃什么| 胎监不过关是什么原因| 肺炎是什么原因引起的| 申五行属什么| 脾大是什么原因造成的| 儿童水杯什么材质好| 5年存活率是什么意思| 湿气重要吃什么| 少阳病是什么意思| fossil是什么意思| 什么是预科生| 牙杀完神经为什么还疼| 屈原为什么投江| 热痱子用什么药| 六月十四是什么星座| 姐姐的孩子叫我什么| 安陵容为什么恨甄嬛| 淋巴细胞偏低是什么意思| 神什么气什么| 叶凡为什么找石昊求救| 巨细胞病毒阳性什么意思| 什么食物对肝有好处| 窦性心动过缓什么意思| 来月经有血块是什么原因| 忌神是什么意思| 婴儿足底血筛查什么| 6月25什么星座| 胃疼喝什么粥| 梵音是什么意思| 附件囊肿吃什么药可以消除| 1995年的猪五行属什么| 宝宝大便有泡沫是什么原因| guess是什么牌子| 病灶什么意思| 消化不好吃什么| 迷你什么意思| 生气过度会气出什么病| 女生被操是什么感觉| 乳癖是什么病| 为什么青蛙跳的比树高| 国家主席是什么级别| mice是什么意思| 沅字五行属什么| 大油边是什么肉| 乙肝核心抗体偏高是什么意思| 病案号是什么| oz是什么单位| 打一个喷嚏代表什么| 去皱纹用什么方法最好和最快| 刚怀孕要吃些什么好| 肝肾阴虚是什么原因引起的| 为什么吃一点东西肚子就胀| 血压低吃什么药| 俗气是什么意思| ec什么意思| 世界上最坚硬的东西是什么| 下巴发黑是什么原因| 百度Jump to content

高玩眼中的三国 萌乐网《三国令》打造百变乱世

From Wikipedia, the free encyclopedia
百度 (记者于立霄)

In mathematics, fuzzy sets (also known as uncertain sets) are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set.[1][2] At the same time, Salii (1965) defined a more general kind of structure called an "L-relation", which he studied in an abstract algebraic context; fuzzy relations are special cases of L-relations when L is the unit interval [0,?1]. They are now used throughout fuzzy mathematics, having applications in areas such as linguistics (De Cock, Bodenhofer & Kerre 2000), decision-making (Kuzmin 1982), and clustering (Bezdek 1978).

In classical set theory, the membership of elements in a set is assessed in binary terms according to a bivalent condition—an element either belongs or does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the membership of elements in a set; this is described with the aid of a membership function valued in the real unit interval [0,?1]. Fuzzy sets generalize classical sets, since the indicator functions (aka characteristic functions) of classical sets are special cases of the membership functions of fuzzy sets, if the latter only takes values 0 or 1.[3] In fuzzy set theory, classical bivalent sets are usually called crisp sets. The fuzzy set theory can be used in a wide range of domains in which information is incomplete or imprecise, such as bioinformatics.[4]

Definition

[edit]

A fuzzy set is a pair where is a set (often required to be non-empty) and a membership function. The reference set (sometimes denoted by or ) is called universe of discourse, and for each the value is called the grade of membership of in . The function is called the membership function of the fuzzy set .

For a finite set the fuzzy set is often denoted by

Let . Then is called

  • not included in the fuzzy set if (no member),
  • fully included if (full member),
  • partially included if (fuzzy member).[5]

The (crisp) set of all fuzzy sets on a universe is denoted with (or sometimes just ).[citation needed]

[edit]

For any fuzzy set and the following crisp sets are defined:

  • is called its α-cut (aka α-level set)
  • is called its strong α-cut (aka strong α-level set)
  • is called its support
  • is called its core (or sometimes kernel ).

Note that some authors understand "kernel" in a different way; see below.

Other definitions

[edit]
  • A fuzzy set is empty () iff (if and only if)
  • Two fuzzy sets and are equal () iff
  • A fuzzy set is included in a fuzzy set () iff
  • For any fuzzy set , any element that satisfies
is called a crossover point.
  • Given a fuzzy set , any , for which is not empty, is called a level of A.
  • The level set of A is the set of all levels representing distinct cuts. It is the image of :
  • For a fuzzy set , its height is given by
where denotes the supremum, which exists because is non-empty and bounded above by 1. If U is finite, we can simply replace the supremum by the maximum.
  • A fuzzy set is said to be normalized iff
In the finite case, where the supremum is a maximum, this means that at least one element of the fuzzy set has full membership. A non-empty fuzzy set may be normalized with result by dividing the membership function of the fuzzy set by its height:
Besides similarities this differs from the usual normalization in that the normalizing constant is not a sum.
  • For fuzzy sets of real numbers with bounded support, the width is defined as
In the case when is a finite set, or more generally a closed set, the width is just
In the n-dimensional case the above can be replaced by the n-dimensional volume of .
In general, this can be defined given any measure on U, for instance by integration (e.g. Lebesgue integration) of .
  • A real fuzzy set is said to be convex (in the fuzzy sense, not to be confused with a crisp convex set), iff
.
Without loss of generality, we may take xy, which gives the equivalent formulation
.
This definition can be extended to one for a general topological space U: we say the fuzzy set is convex when, for any subset Z of U, the condition
holds, where denotes the boundary of Z and denotes the image of a set X (here ) under a function f (here ).

Fuzzy set operations

[edit]

Although the complement of a fuzzy set has a single most common definition, the other main operations, union and intersection, do have some ambiguity.

  • For a given fuzzy set , its complement (sometimes denoted as or ) is defined by the following membership function:
.
  • Let t be a t-norm, and s the corresponding s-norm (aka t-conorm). Given a pair of fuzzy sets , their intersection is defined by:
,
and their union is defined by:
.

By the definition of the t-norm, we see that the union and intersection are commutative, monotonic, associative, and have both a null and an identity element. For the intersection, these are ? and U, respectively, while for the union, these are reversed. However, the union of a fuzzy set and its complement may not result in the full universe U, and the intersection of them may not give the empty set ?. Since the intersection and union are associative, it is natural to define the intersection and union of a finite family of fuzzy sets recursively. It is noteworthy that the generally accepted standard operators for the union and intersection of fuzzy sets are the max and min operators:

  • and .[6]
  • If the standard negator is replaced by another strong negator, the fuzzy set difference (defined below) may be generalized by
  • The triple of fuzzy intersection, union and complement form a De Morgan Triplet. That is, De Morgan's laws extend to this triple.
Examples for fuzzy intersection/union pairs with standard negator can be derived from samples provided in the article about t-norms.
The fuzzy intersection is not idempotent in general, because the standard t-norm min is the only one which has this property. Indeed, if the arithmetic multiplication is used as the t-norm, the resulting fuzzy intersection operation is not idempotent. That is, iteratively taking the intersection of a fuzzy set with itself is not trivial. It instead defines the m-th power of a fuzzy set, which can be canonically generalized for non-integer exponents in the following way:
  • For any fuzzy set and the ν-th power of is defined by the membership function:

The case of exponent two is special enough to be given a name.

  • For any fuzzy set the concentration is defined

Taking , we have and

  • Given fuzzy sets , the fuzzy set difference , also denoted , may be defined straightforwardly via the membership function:
which means , e. g.:
[7]
Another proposal for a set difference could be:
[7]
  • Proposals for symmetric fuzzy set differences have been made by Dubois and Prade (1980), either by taking the absolute value, giving
or by using a combination of just max, min, and standard negation, giving
[7]
Axioms for definition of generalized symmetric differences analogous to those for t-norms, t-conorms, and negators have been proposed by Vemur et al. (2014) with predecessors by Alsina et al. (2005) and Bedregal et al. (2009).[7]
  • In contrast to crisp sets, averaging operations can also be defined for fuzzy sets.

Disjoint fuzzy sets

[edit]

In contrast to the general ambiguity of intersection and union operations, there is clearness for disjoint fuzzy sets: Two fuzzy sets are disjoint iff

which is equivalent to

and also equivalent to

We keep in mind that min/max is a t/s-norm pair, and any other will work here as well.

Fuzzy sets are disjoint if and only if their supports are disjoint according to the standard definition for crisp sets.

For disjoint fuzzy sets any intersection will give ?, and any union will give the same result, which is denoted as

with its membership function given by

Note that only one of both summands is greater than zero.

For disjoint fuzzy sets the following holds true:

This can be generalized to finite families of fuzzy sets as follows: Given a family of fuzzy sets with index set I (e.g. I = {1,2,3,...,n}). This family is (pairwise) disjoint iff

A family of fuzzy sets is disjoint, iff the family of underlying supports is disjoint in the standard sense for families of crisp sets.

Independent of the t/s-norm pair, intersection of a disjoint family of fuzzy sets will give ? again, while the union has no ambiguity:

with its membership function given by

Again only one of the summands is greater than zero.

For disjoint families of fuzzy sets the following holds true:

Scalar cardinality

[edit]

For a fuzzy set with finite support (i.e. a "finite fuzzy set"), its cardinality (aka scalar cardinality or sigma-count) is given by

.

In the case that U itself is a finite set, the relative cardinality is given by

.

This can be generalized for the divisor to be a non-empty fuzzy set: For fuzzy sets with G ≠ ?, we can define the relative cardinality by:

,

which looks very similar to the expression for conditional probability. Note:

  • here.
  • The result may depend on the specific intersection (t-norm) chosen.
  • For the result is unambiguous and resembles the prior definition.

Distance and similarity

[edit]

For any fuzzy set the membership function can be regarded as a family . The latter is a metric space with several metrics known. A metric can be derived from a norm (vector norm) via

.

For instance, if is finite, i.e. , such a metric may be defined by:

where and are sequences of real numbers between 0 and 1.

For infinite , the maximum can be replaced by a supremum. Because fuzzy sets are unambiguously defined by their membership function, this metric can be used to measure distances between fuzzy sets on the same universe:

,

which becomes in the above sample:

.

Again for infinite the maximum must be replaced by a supremum. Other distances (like the canonical 2-norm) may diverge, if infinite fuzzy sets are too different, e.g., and .

Similarity measures (here denoted by ) may then be derived from the distance, e.g. after a proposal by Koczy:

if is finite, else,

or after Williams and Steele:

if is finite, else

where is a steepness parameter and .[citation needed]

L-fuzzy sets

[edit]

Sometimes, more general variants of the notion of fuzzy set are used, with membership functions taking values in a (fixed or variable) algebra or structure of a given kind; usually it is required that be at least a poset or lattice. These are usually called L-fuzzy sets, to distinguish them from those valued over the unit interval. The usual membership functions with values in [0,?1] are then called [0,?1]-valued membership functions. These kinds of generalizations were first considered in 1967 by Joseph Goguen, who was a student of Zadeh.[8] A classical corollary may be indicating truth and membership values by {f,?t} instead of {0,?1}.

An extension of fuzzy sets has been provided by Atanassov. An intuitionistic fuzzy set (IFS) is characterized by two functions:

1. – degree of membership of x
2. – degree of non-membership of x

with functions with .

This resembles a situation like some person denoted by voting

  • for a proposal : (),
  • against it: (),
  • or abstain from voting: ().

After all, we have a percentage of approvals, a percentage of denials, and a percentage of abstentions.

For this situation, special "intuitive fuzzy" negators, t- and s-norms can be defined. With and by combining both functions to this situation resembles a special kind of L-fuzzy sets.

Once more, this has been expanded by defining picture fuzzy sets (PFS) as follows: A PFS A is characterized by three functions mapping U to [0,?1]: , "degree of positive membership", "degree of neutral membership", and "degree of negative membership" respectively and additional condition This expands the voting sample above by an additional possibility of "refusal of voting".

With and special "picture fuzzy" negators, t- and s-norms this resembles just another type of L-fuzzy sets.[9]

Pythagorean fuzzy sets

[edit]

One extension of IFS is what is known as Pythagorean fuzzy sets. Such sets satisfy the constraint , which is reminiscent of the Pythagorean theorem.[10][11][12] Pythagorean fuzzy sets can be applicable to real life applications in which the previous condition of is not valid. However, the less restrictive condition of may be suitable in more domains.[13][14]

Fuzzy logic

[edit]

As an extension of the case of multi-valued logic, valuations () of propositional variables () into a set of membership degrees () can be thought of as membership functions mapping predicates into fuzzy sets (or more formally, into an ordered set of fuzzy pairs, called a fuzzy relation). With these valuations, many-valued logic can be extended to allow for fuzzy premises from which graded conclusions may be drawn.[15]

This extension is sometimes called "fuzzy logic in the narrow sense" as opposed to "fuzzy logic in the wider sense," which originated in the engineering fields of automated control and knowledge engineering, and which encompasses many topics involving fuzzy sets and "approximated reasoning."[16]

Industrial applications of fuzzy sets in the context of "fuzzy logic in the wider sense" can be found at fuzzy logic.

Fuzzy number

[edit]

A fuzzy number[17] is a fuzzy set that satisfies all the following conditions:

  • A is normalised;
  • A is a convex set;
  • The membership function achieves the value 1 at least once;
  • The membership function is at least segmentally continuous.

If these conditions are not satisfied, then A is not a fuzzy number. The core of this fuzzy number is a singleton; its location is:

Fuzzy numbers can be likened to the funfair game "guess your weight," where someone guesses the contestant's weight, with closer guesses being more correct, and where the guesser "wins" if he or she guesses near enough to the contestant's weight, with the actual weight being completely correct (mapping to 1 by the membership function).

The kernel of a fuzzy interval is defined as the 'inner' part, without the 'outbound' parts where the membership value is constant ad infinitum. In other words, the smallest subset of where is constant outside of it, is defined as the kernel.

However, there are other concepts of fuzzy numbers and intervals as some authors do not insist on convexity.

Fuzzy categories

[edit]

The use of set membership as a key component of category theory can be generalized to fuzzy sets. This approach, which began in 1968 shortly after the introduction of fuzzy set theory,[18] led to the development of Goguen categories in the 21st century.[19][20] In these categories, rather than using two valued set membership, more general intervals are used, and may be lattices as in L-fuzzy sets.[20][21]

There are numerous mathematical extensions similar to or more general than fuzzy sets. Since fuzzy sets were introduced in 1965 by Zadeh, many new mathematical constructions and theories treating imprecision, inaccuracy, vagueness, uncertainty and vulnerability have been developed. Some of these constructions and theories are extensions of fuzzy set theory, while others attempt to mathematically model inaccuracy/vagueness and uncertainty in a different way. The diversity of such constructions and corresponding theories includes:

  • Fuzzy Sets (Zadeh, 1965)
  • interval sets (Moore, 1966),
  • L-fuzzy sets (Goguen, 1967),
  • flou sets (Gentilhomme, 1968),
  • type-2 fuzzy sets and type-n fuzzy sets (Zadeh, 1975),
  • interval-valued fuzzy sets (Grattan-Guinness, 1975; Jahn, 1975; Sambuc, 1975; Zadeh, 1975),
  • level fuzzy sets (Radecki, 1977)
  • rough sets (Pawlak, 1982),
  • intuitionistic fuzzy sets (Atanassov, 1983),
  • fuzzy multisets (Yager, 1986),
  • intuitionistic L-fuzzy sets (Atanassov, 1986),
  • rough multisets (Grzymala-Busse, 1987),
  • fuzzy rough sets (Nakamura, 1988),
  • real-valued fuzzy sets (Blizard, 1989),
  • vague sets (Wen-Lung Gau and Buehrer, 1993),
  • α-level sets (Yao, 1997),
  • shadowed sets (Pedrycz, 1998),
  • neutrosophic sets (NSs) (Smarandache, 1998),
  • bipolar fuzzy sets (Wen-Ran Zhang, 1998),
  • genuine sets (Demirci, 1999),
  • soft sets (Molodtsov, 1999),
  • complex fuzzy set (2002),
  • intuitionistic fuzzy rough sets (Cornelis, De Cock and Kerre, 2003)
  • L-fuzzy rough sets (Radzikowska and Kerre, 2004),
  • multi-fuzzy sets (Sabu Sebastian, 2009),
  • generalized rough fuzzy sets (Feng, 2010)
  • rough intuitionistic fuzzy sets (Thomas and Nair, 2011),
  • soft rough fuzzy sets (Meng, Zhang and Qin, 2011)
  • soft fuzzy rough sets (Meng, Zhang and Qin, 2011)
  • soft multisets (Alkhazaleh, Salleh and Hassan, 2011)
  • fuzzy soft multisets (Alkhazaleh and Salleh, 2012)
  • pythagorean fuzzy set (Yager , 2013),
  • picture fuzzy set (Cuong, 2013),
  • spherical fuzzy set (Mahmood, 2018).

Fuzzy relation equation

[edit]

The fuzzy relation equation is an equation of the form A · R = B, where A and B are fuzzy sets, R is a fuzzy relation, and A · R stands for the composition of A with R [citation needed].

Entropy

[edit]

A measure d of fuzziness for fuzzy sets of universe should fulfill the following conditions for all :

  1. if is a crisp set:
  2. has a unique maximum iff
,
which means that B is "crisper" than A.

In this case is called the entropy of the fuzzy set A.

For finite the entropy of a fuzzy set is given by

,

or just

where is Shannon's function (natural entropy function)

and is a constant depending on the measure unit and the logarithm base used (here we have used the natural base e). The physical interpretation of k is the Boltzmann constant kB.

Let be a fuzzy set with a continuous membership function (fuzzy variable). Then

and its entropy is

[22][23]

Extensions

[edit]

There are many mathematical constructions similar to or more general than fuzzy sets. Since fuzzy sets were introduced in 1965, many new mathematical constructions and theories treating imprecision, inexactness, ambiguity, and uncertainty have been developed. Some of these constructions and theories are extensions of fuzzy set theory, while others try to mathematically model imprecision and uncertainty in a different way.[24]

See also

[edit]

References

[edit]
  1. ^ L. A. Zadeh (1965) "Fuzzy sets" Archived 2025-08-07 at the Wayback Machine. Information and Control 8 (3) 338–353.
  2. ^ Klaua, D. (1965) über einen Ansatz zur mehrwertigen Mengenlehre. Monatsb. Deutsch. Akad. Wiss. Berlin 7, 859–876. A recent in-depth analysis of this paper has been provided by Gottwald, S. (2010). "An early approach toward graded identity and graded membership in set theory". Fuzzy Sets and Systems. 161 (18): 2369–2379. doi:10.1016/j.fss.2009.12.005.
  3. ^ D. Dubois and H. Prade (1988) Fuzzy Sets and Systems. Academic Press, New York.
  4. ^ Liang, Lily R.; Lu, Shiyong; Wang, Xuena; Lu, Yi; Mandal, Vinay; Patacsil, Dorrelyn; Kumar, Deepak (2006). "FM-test: A fuzzy-set-theory-based approach to differential gene expression data analysis". BMC Bioinformatics. 7 (Suppl 4): S7. doi:10.1186/1471-2105-7-S4-S7. PMC 1780132. PMID 17217525.
  5. ^ "AAAI". Archived from the original on August 5, 2008.
  6. ^ Bellman, Richard; Giertz, Magnus (1973). "On the analytic formalism of the theory of fuzzy sets". Information Sciences. 5: 149–156. doi:10.1016/0020-0255(73)90009-1.
  7. ^ a b c d N.R. Vemuri, A.S. Hareesh, M.S. Srinath: Set Difference and Symmetric Difference of Fuzzy Sets, in: Fuzzy Sets Theory and Applications 2014, Liptovsky Ján, Slovak Republic
  8. ^ Goguen, J.A (1967). "L-fuzzy sets". Journal of Mathematical Analysis and Applications. 18: 145–174. doi:10.1016/0022-247X(67)90189-8.
  9. ^ Bui Cong Cuong, Vladik Kreinovich, Roan Thi Ngan: A classification of representable t-norm operators for picture fuzzy sets, in: Departmental Technical Reports (CS). Paper 1047, 2016
  10. ^ Yager, Ronald R. (June 2013). "Pythagorean fuzzy subsets". 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). pp. 57–61. doi:10.1109/IFSA-NAFIPS.2013.6608375. ISBN 978-1-4799-0348-1. S2CID 36286152.
  11. ^ Yager, Ronald R (2013). "Pythagorean membership grades in multicriteria decision making". IEEE Transactions on Fuzzy Systems. 22 (4): 958–965. doi:10.1109/TFUZZ.2013.2278989. S2CID 37195356.
  12. ^ Yager, Ronald R. (December 2015). Properties and applications of Pythagorean fuzzy sets. Cham: Springer. pp. 119–136. ISBN 978-3-319-26302-1.
  13. ^ Yanase J, Triantaphyllou E (2019). "A Systematic Survey of Computer-Aided Diagnosis in Medicine: Past and Present Developments". Expert Systems with Applications. 138: 112821. doi:10.1016/j.eswa.2019.112821. S2CID 199019309.
  14. ^ Yanase J, Triantaphyllou E (2019). "The Seven Key Challenges for the Future of Computer-Aided Diagnosis in Medicine". International Journal of Medical Informatics. 129: 413–422. doi:10.1016/j.ijmedinf.2019.06.017. PMID 31445285. S2CID 198287435.
  15. ^ Siegfried Gottwald, 2001. A Treatise on Many-Valued Logics. Baldock, Hertfordshire, England: Research Studies Press Ltd., ISBN 978-0-86380-262-1
  16. ^ Zadeh, L.A. (1975). "The concept of a linguistic variable and its application to approximate reasoning—I". Information Sciences. 8 (3): 199–249. doi:10.1016/0020-0255(75)90036-5.
  17. ^ Zadeh, L.A. (1999). "Fuzzy sets as a basis for a theory of possibility". Fuzzy Sets and Systems. 100: 9–34. doi:10.1016/S0165-0114(99)80004-9.
  18. ^ J. A. Goguen "Categories of fuzzy sets: applications of non-Cantorian set theory" PhD Thesis University of California, Berkeley, 1968
  19. ^ Michael Winter "Goguen Categories:A Categorical Approach to L-fuzzy Relations" 2007 Springer ISBN 9781402061639
  20. ^ a b Winter, Michael (2003). "Representation theory of Goguen categories". Fuzzy Sets and Systems. 138: 85–126. doi:10.1016/S0165-0114(02)00508-0.
  21. ^ Goguen, J.A (1967). "L-fuzzy sets". Journal of Mathematical Analysis and Applications. 18: 145–174. doi:10.1016/0022-247X(67)90189-8.
  22. ^ Xuecheng, Liu (1992). "Entropy, distance measure and similarity measure of fuzzy sets and their relations". Fuzzy Sets and Systems. 52 (3): 305–318. doi:10.1016/0165-0114(92)90239-Z.
  23. ^ Li, Xiang (2015). "Fuzzy cross-entropy". Journal of Uncertainty Analysis and Applications. 3. doi:10.1186/s40467-015-0029-5.
  24. ^ Burgin & Chunihin 1997; Kerre 2001; Deschrijver & Kerre 2003.

Bibliography

[edit]
  • Alkhazaleh, Shawkat; Salleh, Abdul Razak (2012). "Fuzzy Soft Multiset Theory". Abstract and Applied Analysis. doi:10.1155/2012/350603.
  • Atanassov, K. T. (1983) Intuitionistic fuzzy sets, VII ITKR's Session, Sofia (deposited in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian)
  • Atanassov, Krassimir T. (1986). "Intuitionistic fuzzy sets". Fuzzy Sets and Systems. 20: 87–96. doi:10.1016/S0165-0114(86)80034-3.
  • Bezdek, J.C. (1978). "Fuzzy partitions and relations and axiomatic basis for clustering". Fuzzy Sets and Systems. 1 (2): 111–127. doi:10.1016/0165-0114(78)90012-X.
  • Blizard, Wayne D. (1989). "Real-valued multisets and fuzzy sets". Fuzzy Sets and Systems. 33: 77–97. doi:10.1016/0165-0114(89)90218-2.
  • Brown, Joseph G. (1971). "A note on fuzzy sets". Information and Control. 18: 32–39. doi:10.1016/S0019-9958(71)90288-9.
  • Brutoczki Kornelia: Fuzzy Logic (Diploma) – Although this script has many oddities and intricacies due to its incompleteness, it may be used a template for exercise in removing these issues.
  • Burgin, M. Theory of Named Sets as a Foundational Basis for Mathematics, in Structures in Mathematical Theories, San Sebastian, 1990, pp.  417–420
  • Burgin, M.; Chunihin, A. (1997). "Named Sets in the Analysis of Uncertainty". Methodological and Theoretical Problems of Mathematics and Information Sciences. Kiev: 72–85.
  • Cattaneo, Gianpiero; Ciucci, Davide (2002). "Heyting Wajsberg Algebras as an Abstract Environment Linking Fuzzy and Rough Sets". Rough Sets and Current Trends in Computing. Lecture Notes in Computer Science. Vol. 2475. pp. 77–84. doi:10.1007/3-540-45813-1_10. ISBN 978-3-540-44274-5.
  • Chamorro-Martínez, J.; Sánchez, D.; Soto-Hidalgo, J.M.; Martínez-Jiménez, P.M. (2014). "A discussion on fuzzy cardinality and quantification. Some applications in image processing". Fuzzy Sets and Systems. 257: 85–101. doi:10.1016/j.fss.2013.05.009.
  • Chapin, E.W. (1974) Set-valued Set Theory, I, Notre Dame J. Formal Logic, v. 15, pp. 619–634
  • Chapin, E.W. (1975) Set-valued Set Theory, II, Notre Dame J. Formal Logic, v. 16, pp. 255–267
  • Cornelis, Chris; De Cock, Martine; Kerre, Etienne E. (2003). "Intuitionistic fuzzy rough sets: At the crossroads of imperfect knowledge". Expert Systems. 20 (5): 260–270. doi:10.1111/1468-0394.00250. S2CID 15031773.
  • Cornelis, Chris; Deschrijver, Glad; Kerre, Etienne E. (2004). "Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application". International Journal of Approximate Reasoning. 35: 55–95. doi:10.1016/S0888-613X(03)00072-0.
  • De Cock, Martine; Bodenhofer, Ulrich; Kerre, Etienne E. (1–4 October 2000). Modelling Linguistic Expressions Using Fuzzy Relations. Proceedings of the 6th International Conference on Soft Computing. Iizuka, Japan. pp. 353–360. CiteSeerX 10.1.1.32.8117.
  • Demirci, Mustafa (1999). "Genuine sets". Fuzzy Sets and Systems. 105 (3): 377–384. doi:10.1016/S0165-0114(97)00235-2.
  • Deschrijver, G.; Kerre, E.E. (2003). "On the relationship between some extensions of fuzzy set theory". Fuzzy Sets and Systems. 133 (2): 227–235. doi:10.1016/S0165-0114(02)00127-6.
  • Didier Dubois, Henri M. Prade, ed. (2000). Fundamentals of fuzzy sets. The Handbooks of Fuzzy Sets Series. Vol. 7. Springer. ISBN 978-0-7923-7732-0.
  • Feng, Feng (2009). "Generalized Rough Fuzzy Sets Based on Soft Sets". 2009 International Workshop on Intelligent Systems and Applications. pp. 1–4. doi:10.1109/IWISA.2009.5072885. ISBN 978-1-4244-3893-8.
  • Gentilhomme, Y. (1968) Les ensembles flous en linguistique, Cahiers de Linguistique Théorique et Appliquée, 5, pp. 47–63
  • Goguen, J.A (1967). "L-fuzzy sets". Journal of Mathematical Analysis and Applications. 18: 145–174. doi:10.1016/0022-247X(67)90189-8.
  • Gottwald, S. (2006). "Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches". Studia Logica. 82 (2): 211–244. doi:10.1007/s11225-006-7197-8. S2CID 11931230.. Gottwald, S. (2006). "Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part II: Category Theoretic Approaches". Studia Logica. 84: 23–50. doi:10.1007/s11225-006-9001-1. S2CID 10453751. preprint..
  • Grattan-Guinness, I. (1975) Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik. Grundladen Math. 22, pp. 149–160.
  • Grzymala-Busse, J. Learning from examples based on rough multisets, in Proceedings of the 2nd International Symposium on Methodologies for Intelligent Systems, Charlotte, NC, USA, 1987, pp. 325–332
  • Gylys, R. P. (1994) Quantal sets and sheaves over quantales, Liet. Matem. Rink., v. 34, No. 1, pp. 9–31.
  • Ulrich H?hle, Stephen Ernest Rodabaugh, ed. (1999). Mathematics of fuzzy sets: logic, topology, and measure theory. The Handbooks of Fuzzy Sets Series. Vol. 3. Springer. ISBN 978-0-7923-8388-8.
  • Jahn, K.-U. (1975). "Intervall-wertige Mengen". Mathematische Nachrichten. 68: 115–132. doi:10.1002/MANA.19750680109.
  • Kaufmann, Arnold. Introduction to the theory of fuzzy subsets. Vol. 2. Academic Press, 1975.
  • Kerre, E.E. (2001). "A First View on the Alternatives of Fuzzy Set Theory". In B. Reusch; K-H. Temme (eds.). Computational Intelligence in Theory and Practice. Heidelberg: Physica-Verlag. pp. 55–72. doi:10.1007/978-3-7908-1831-4_4. ISBN 978-3-7908-1357-9.
  • George J. Klir; Bo Yuan (1995). Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall. ISBN 978-0-13-101171-7.
  • Kuzmin, V.B. (1982). "Building Group Decisions in Spaces of Strict and Fuzzy Binary Relations" (in Russian). Nauka, Moscow.
  • Lake, John (1976). "Sets, Fuzzy Sets, Multisets and Functions". Journal of the London Mathematical Society (3): 323–326. doi:10.1112/jlms/s2-12.3.323.
  • Meng, Dan; Zhang, Xiaohong; Qin, Keyun (2011). "Soft rough fuzzy sets and soft fuzzy rough sets". Computers & Mathematics with Applications. 62 (12): 4635–4645. doi:10.1016/j.camwa.2011.10.049.
  • Miyamoto, Sadaaki (2001). "Fuzzy Multisets and Their Generalizations". Multiset Processing. Lecture Notes in Computer Science. Vol. 2235. pp. 225–235. doi:10.1007/3-540-45523-X_11. ISBN 978-3-540-43063-6.
  • Molodtsov, D. (1999). "Soft set theory—First results". Computers & Mathematics with Applications. 37 (4–5): 19–31. doi:10.1016/S0898-1221(99)00056-5.
  • Moore, R.E. Interval Analysis, New York, Prentice-Hall, 1966
  • Nakamura, A. (1988) Fuzzy rough sets, 'Notes on Multiple-valued Logic in Japan', v. 9, pp. 1–8
  • Narinyani, A.S. Underdetermined Sets – A new datatype for knowledge representation, Preprint 232, Project VOSTOK, issue 4, Novosibirsk, Computing Center, USSR Academy of Sciences, 1980
  • Pedrycz, W. (1998). "Shadowed sets: Representing and processing fuzzy sets". IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 28 (1): 103–109. doi:10.1109/3477.658584. PMID 18255928.
  • Radecki, Tadeusz (1977). "Level Fuzzy Sets". Journal of Cybernetics. 7 (3–4): 189–198. doi:10.1080/01969727708927558.
  • Radzikowska, Anna Maria; Kerre, Etienne E. (2004). "On L–Fuzzy Rough Sets". Artificial Intelligence and Soft Computing - ICAISC 2004. Lecture Notes in Computer Science. Vol. 3070. pp. 526–531. doi:10.1007/978-3-540-24844-6_78. ISBN 978-3-540-22123-4.
  • Salii, V.N. (1965). "Binary L-relations" (PDF). Izv. Vysh. Uchebn. Zaved. Matematika (in Russian). 44 (1): 133–145.
  • Ramakrishnan, T.V., and Sabu Sebastian (2010) 'A study on multi-fuzzy sets', Int. J. Appl. Math. 23, 713–721.
  • Sabu Sebastian and Ramakrishnan, T. V.(2010) 'Multi-fuzzy sets', Int. Math. Forum 50, 2471–2476.
  • Sebastian, Sabu; Ramakrishnan, T.V. (2011). "Multi-fuzzy Sets: An Extension of Fuzzy Sets". Fuzzy Information and Engineering. 3: 35–43. doi:10.1007/s12543-011-0064-y.
  • Sebastian, Sabu; Ramakrishnan, T. V. (2011). "Multi-Fuzzy Extensions of Functions". Advances in Adaptive Data Analysis. 03 (3): 339–350. doi:10.1142/S1793536911000714.
  • Sabu Sebastian and Ramakrishnan, T. V.(2011) Multi-fuzzy extension of crisp functions using bridge functions, Ann. Fuzzy Math. Inform. 2 (1), 1–8
  • Sambuc, R. Fonctions φ-floues: Application à l'aide au diagnostic en pathologie thyroidienne, Ph.D. Thesis Univ. Marseille, France, 1975.
  • Seising, Rudolf: The Fuzzification of Systems. The Genesis of Fuzzy Set Theory and Its Initial Applications—Developments up to the 1970s (Studies in Fuzziness and Soft Computing, Vol. 216) Berlin, New York, [et al.]: Springer 2007.
  • Smith, Nicholas J. J. (2004). "Vagueness and Blurry Sets". Journal of Philosophical Logic. 33 (2): 165–235. doi:10.1023/B:LOGI.0000021717.26376.3f.
  • Werro, Nicolas: Fuzzy Classification of Online Customers Archived 2025-08-07 at the Wayback Machine, University of Fribourg, Switzerland, 2008, Chapter 2
  • Yager, Ronald R. (1986). "On the Theory of Bags". International Journal of General Systems. 13: 23–37. doi:10.1080/03081078608934952.
  • Yao, Y.Y., Combination of rough and fuzzy sets based on α-level sets, in: Rough Sets and Data Mining: Analysis for Imprecise Data, Lin, T.Y. and Cercone, N. (Eds.), Kluwer Academic Publishers, Boston, pp. 301–321, 1997.
  • Yao, Y. (1998). "A comparative study of fuzzy sets and rough sets". Information Sciences. 109 (1–4): 227–242. doi:10.1016/S0020-0255(98)10023-3.
  • Zadeh, L.A. (1975). "The concept of a linguistic variable and its application to approximate reasoning—I". Information Sciences. 8 (3): 199–249. doi:10.1016/0020-0255(75)90036-5.
  • Hans-Jürgen Zimmermann (2001). Fuzzy set theory—and its applications (4th ed.). Kluwer. ISBN 978-0-7923-7435-0.
伤感是什么意思 二级警督是什么级别 女人喝黄芪有什么好处 弥漫性肝病是什么意思 tin什么意思
嬗变是什么意思 垂爱是什么意思 kaiser是什么品牌 脾湿热吃什么中成药 婴儿什么时候开始认人
犹太人为什么不受欢迎 1月29日是什么星座 贫血的人来姨妈会有什么症状 月亮是什么生肖 有齿痕吃什么药
西凤酒是什么香型 口干是什么原因引起的怎么治疗 梦见手指流血是什么预兆 人体消化道中最长的器官是什么 肝胆挂什么科
脊柱炎吃什么药效果好hcv9jop1ns6r.cn 黑猫警长叫什么名字hcv8jop8ns6r.cn 公费是什么意思hcv9jop1ns0r.cn 黑茶金花是什么菌hcv9jop1ns3r.cn 吃什么药通气放屁最快onlinewuye.com
michaelkors是什么牌子hcv7jop6ns7r.cn 青光眼用什么眼药水jiuxinfghf.com 婴儿反复发烧是什么原因引起的hcv9jop2ns7r.cn 清对什么hcv9jop5ns7r.cn gary是什么意思hcv8jop9ns2r.cn
苏打水为什么是甜的hcv8jop6ns9r.cn 为什么心里老是想着死hcv8jop9ns2r.cn 要强的女人是什么性格hcv7jop9ns6r.cn 香菜炒什么好吃jinxinzhichuang.com 青梅竹马是什么意思hcv8jop0ns2r.cn
满清是什么民族jingluanji.com 降火吃什么hcv8jop4ns4r.cn 一什么便什么造句jasonfriends.com 春的五行属性是什么hcv8jop7ns6r.cn 冲击波治疗有什么效果hcv8jop8ns2r.cn
百度