孕酮偏高说明什么| 大脚趾发黑是什么原因| biw医学上是什么意思| 减张缝合是什么意思| 斤是什么单位| 洋芋是什么| 拉肚子按摩什么地方可止泻| 14k是什么意思| 为什么会莫名其妙流鼻血| loc是什么意思| 什么是扬州瘦马| 葡萄糖高是什么意思| 狗屎运是什么意思| 下巴长闭口是什么原因| 什么人不能吃马齿苋| 饵丝是什么| 不含而立是什么意思| 多饮多尿可能是什么病| 股骨头疼痛吃什么药| 什么是伤官见官| 风寒感冒吃什么药最快| 祈禳是什么意思| 小学生什么时候开学| 肝做什么检查最准确| 外来猫进家有什么预兆| 护士一般是什么学历| 排斥是什么意思| 珍珠是用什么做的| 多囊卵巢综合症吃什么药| 心肌缺血是什么原因造成的| 脚脱皮用什么药膏| 一流是什么意思| 丹田是什么器官| 九月九日是什么日子| 巧囊是什么原因形成的| 97年属牛的是什么命| 陈皮的作用是什么| 白茶和绿茶有什么区别| 比熊吃什么牌子的狗粮好| 肚脐眼叫什么穴位| 祖坟冒青烟是什么意思| 肿瘤病人不能吃什么| 基础病是什么意思| 什么是孝| 县法院院长是什么级别| 贱人的意思是什么意思| 2030是什么年| 非萎缩性胃炎是什么意思| 舌苔发黑是什么病的前兆| 小青柑是什么茶类| 脖子后面正中间有痣代表什么| 什么是甲状腺| 沙漠玫瑰什么时候开花| 为什么会漏尿| 带子是什么海鲜| 6.5是什么星座| 紫癜吃什么药| 人这一生为了什么| 10月28日是什么日子| 小太阳是什么意思| 蜗牛什么梗| 969368是什么电话| 立刀旁与什么有关| 笔画最多的字是什么字| 义父什么意思| 拉肚子吃什么食物好| 麟字五行属什么| aemape是什么牌子| 乌鱼蛋是什么| 43岁属什么生肖| 喝茶叶水有什么好处和坏处| 血稠是什么原因引起的| 五险一金什么时候开始交| 米加参念什么| 胰腺分泌什么| 耳石症眩晕吃什么药| 十月三十号什么星座| 江河日下是什么意思| 见不得别人好是什么心理| 前置是什么意思| 嘴苦是什么原因造成的| 大将军衔相当于什么官| 幽门螺杆菌是什么症状| 下面瘙痒用什么药膏| 女人吃芡实有什么好处| 胆囊息肉有什么症状| 炖羊肉都放什么调料| 大脑供血不足吃什么药最好| 桃李满天下什么意思| 为什么会突然得荨麻疹| 姨妈来了吃什么水果好| 什么是肝癌| 布吉岛什么意思| 什么原因导致卵巢早衰| 凤尾鱼为什么突然就死| sc是什么意思| 做了胃镜多久可以吃东西吃些什么| 室内传导阻滞什么意思| 吃什么东西可以变白| 犒劳是什么意思| 梦见被猪咬是什么意思| 正月十八是什么星座| 扁桃体发炎是什么症状| 宝批龙什么意思| 吉尼斯是什么意思| 月经老是推迟是什么原因| 烤瓷牙和全瓷牙有什么区别| 户名是什么意思| 刚怀孕肚子有什么变化| 22年什么婚| 扁桃体发炎引起的发烧吃什么药| 鱼油什么时间吃最好| 着床出血什么时候出现| 头发的主要成分是什么| 狗为什么会吐| 梦见和死去的亲人说话是什么意思| 天天睡不着觉什么原因| 孕吐什么时候出现| 补气补血吃什么好| 3月2日是什么星座| 老匹夫是什么意思| 口若悬河是指什么生肖| 碳元素是什么| 氯低是什么原因| 梦到前男友是什么意思| 失眠吃什么食物效果最好| hl代表什么| 经期头疼是什么原因怎么办| 毫不犹豫的意思是什么| 手术后吃什么鱼伤口愈合快| 啤酒有什么牌子| 黄帝内经是什么时期的| 拔罐出水泡是什么原因| 十二月十八号是什么星座| 栀子有什么功效| 发迹是什么意思| ra是什么病| 盗汗遗精是什么意思| 都有什么大学| 伤官配印是什么意思| 中国移动增值业务费是什么| 萎缩性胃炎是什么症状| 来月经有异味什么原因| hpv6阳性是什么意思| mmhg是什么单位| 喇叭裤配什么鞋子好看| 头里面有肿瘤有什么症状| 奶茶色是什么颜色| 七点到九点是什么时辰| 组织液是什么| 梦见大棺材是什么预兆| 吃头孢不能吃什么| 因果报应是什么意思| 一个兹一个子念什么| 歹且念什么| 脸色发黑是什么原因| 什么东西天气越热它爬得越高| 吃什么能治结石| 肚子疼喝什么能缓解| 下水道井盖为什么是圆的| 疣体是什么| 战五渣是什么意思| 头疼是因为什么| ooc什么意思| 番茄酱和番茄沙司有什么区别| 七八年属什么生肖| 荨麻疹可以涂什么药膏| 手小的男人代表什么| 倒模是什么| 月经期间能吃什么水果| 什么什么大叫| 附件炎用什么药最好| 物以类聚人以群分什么意思| 跛行是什么意思| 脂肪垫是什么| 6月17什么星座| 胸口疼是什么原因| 冲蛇煞西是什么意思| aa什么意思| 葡萄酒中的单宁是什么| 肚脐眼上面痛是什么原因引起的| 齿痕舌是什么原因| 椰子什么时候成熟| 月经褐色是什么原因| 什么是苔藓皮肤病| 外阴瘙痒是什么原因| 敏感的反义词是什么| 碘伏是什么颜色| 河汉是什么意思| 1月23日是什么星座| 牙齿痛吃什么药最管用| 33朵玫瑰花代表什么意思| 铜罗是什么生肖| 花团锦簇什么意思| 心肌酶高有什么危害| 什么的珊瑚| 海纳百川是什么意思| 血红蛋白偏高说明了什么| 打卤面都有什么卤| 荔枝有什么作用与功效| 高考都考什么| 早泄是什么| 三月一日是什么星座| 女内分泌检查什么项目| 蓝莓有什么功效与作用| 约炮什么意思| 腰肌劳损什么症状| 为什么会突然耳鸣| 八月17号是什么星座的| 黄色是什么意思| 哥哥的儿子叫什么| 气血不足吃什么食物| 海带与什么食物相克| 许多的近义词是什么| 不二法门是什么意思| 脸麻是什么原因引起的| 8.3是什么星座| 荨麻疹可以涂什么药膏| 事后紧急避孕药什么时候吃有效| 梦到孩子丢了是什么征兆| 一般什么人戴江诗丹顿| 1月12号是什么星座| 脸上长藓用什么药| 2008年是什么年| 头不由自主的轻微晃动是什么病| 脚掌发红是什么原因| 产后漏尿是什么原因| 成人晚上磨牙是什么原因| 1999年发生了什么事| 高铁与动车的区别是什么| 小孩检查微量元素挂什么科| 为什么老是打喷嚏| 严重失眠吃什么药| 结婚送什么礼物最合适| 长一根白眉毛预示什么| 男人做梦梦到蛇是什么意思| 电压不稳定是什么原因| 胃泌素释放肽前体高是什么原因| 99属什么生肖| 药流前需要做什么检查| 骨赘形成是什么意思| 一直不射精是什么原因| 1月18日什么星座| 吃深海鱼油有什么好处和坏处| 肠道功能紊乱吃什么药效果好| 气节是什么意思| 打猎是什么意思| 切除子宫对身体有什么影响| 便秘什么意思| 甲状腺偏高是什么原因引起的| 橄榄枝象征着什么| 纤维素是什么| 死心塌地什么意思| 女性什么时候退休| 好嘛是什么意思| 蜂蜜水喝了有什么好处| 幼稚是什么意思| 肾上腺素是什么意思| 湿气重看中医挂什么科| 物心念什么| 手上十个簸箕代表什么| 疱疹是什么原因引起的| 苦尽甘来是什么意思| y谷氨酰基转移酶高是什么原因| 百度Jump to content

火气重喝什么茶

From Wikipedia, the free encyclopedia
百度 规定城管办可通过政府采购的方式委托专业机构发现问题、采集信息,确立了“政府出钱买服务”的基本模式,体现了数字城管的杭州特色,受到了国务院和建设部领导的充分肯定。

In mathematical logic, a Boolean-valued model is a generalization of the ordinary Tarskian notion of structure from model theory. In a Boolean-valued model, the truth values of propositions are not limited to "true" and "false", but instead take values in some fixed complete Boolean algebra.

Boolean-valued models were introduced by Dana Scott, Robert M. Solovay, and Petr Vopěnka in the 1960s in order to help understand Paul Cohen's method of forcing. They are also related to Heyting algebra semantics in intuitionistic logic.

Definition

[edit]

Fix a complete Boolean algebra B[1] and a first-order language L; the signature of L will consist of a collection of constant symbols, function symbols, and relation symbols.

A Boolean-valued model for the language L consists of a universe M, which is a set of elements (or names), together with interpretations for the symbols. Specifically, the model must assign to each constant symbol of L an element of M, and to each n-ary function symbol f of L and each n-tuple ?a0,...,an-1? of elements of M, the model must assign an element of M to the term f(a0,...,an-1).

Interpretation of the atomic formulas of L is more complicated. To each pair a and b of elements of M, the model must assign a truth value a = b to the expression a = b; this truth value is taken from the Boolean algebra B. Similarly, for each n-ary relation symbol R of L and each n-tuple ?a0,...,an-1? of elements of M, the model must assign an element of B to be the truth value ‖R(a0,...,an-1)‖.

Interpretation of other formulas and sentences

[edit]

The truth values of the atomic formulas can be used to reconstruct the truth values of more complicated formulas, using the structure of the Boolean algebra. For propositional connectives, this is easy; one simply applies the corresponding Boolean operators to the truth values of the subformulae. For example, if φ(x) and ψ(y,z) are formulas with one and two free variables, respectively, and if a, b, c are elements of the model's universe to be substituted for x, y, and z, then the truth value of

is simply

The completeness of the Boolean algebra is required to define truth values for quantified formulas. If φ(x) is a formula with free variable x (and possibly other free variables that are suppressed), then

where the right-hand side is to be understood as the supremum in B of the set of all truth values ||φ(a)|| as a ranges over M.

The truth value of a formula is an element of the complete Boolean algebra B.

Boolean-valued models of set theory

[edit]

Given a complete Boolean algebra B[1] there is a Boolean-valued model denoted by VB, which is the Boolean-valued analogue of the von Neumann universe V. (Strictly speaking, VB is a proper class, so we need to reinterpret what it means to be a model appropriately.) Informally, the elements of VB are "Boolean-valued sets". Given an ordinary set A, every set either is or is not a member of A; but given a Boolean-valued set, every set has a certain, fixed membership degree in A.

The elements of the Boolean-valued set, in turn, are also Boolean-valued sets, whose elements are also Boolean-valued sets, and so on. In order to obtain a non-circular definition of Boolean-valued set, they are defined inductively in a hierarchy similar to the cumulative hierarchy. For each ordinal α of V, the set VBα is defined as follows.

  • VB0 is the empty set.
  • VBα+1 is the set of all functions from VBα to B. (Such a function represents a subset of VBα; if f is such a function, then for any xVBα, the value f(x) is the membership degree of x in the set.)
  • If α is a limit ordinal, VBα is the union of VBβ for β < α.

The class VB is defined to be the union of all sets VBα.

It is also possible to relativize this entire construction to some transitive model M of ZF (or sometimes a fragment thereof). The Boolean-valued model MB is obtained by applying the above construction inside M. The restriction to transitive models is not serious, as the Mostowski collapsing theorem implies that every "reasonable" (well-founded, extensional) model is isomorphic to a transitive one. (If the model M is not transitive things get messier, as M′s interpretation of what it means to be a "function" or an "ordinal" may differ from the "external" interpretation.)

Once the elements of VB have been defined as above, it is necessary to define B-valued relations of equality and membership on VB. Here a B-valued relation on VB is a function from VB × VB to B. To avoid confusion with the usual equality and membership, these are denoted by x = y and xy for x and y in VB. They are defined as follows:

xy is defined to be Σt ∈ Dom(y)x = t‖ ∧ y(t) ??("x is in y if it is equal to something in y").
x = y is defined to be x ? y‖∧‖y ? x ??("x equals y if x and y are both subsets of each other"), where
x ? y is defined to be Πt ∈ Dom(x) x(t) ? ‖ty ??("x is a subset of y if all elements of x are in y")

The symbols Σ and Π denote the least upper bound and greatest lower bound operations, respectively, in the complete Boolean algebra B. At first sight the definitions above appear to be circular: ‖‖ depends on ‖=‖, which depends on ‖?‖, which depends on ‖‖. However, a close examination shows that the definition of ‖‖ only depends on ‖‖ for elements of smaller rank, so ‖‖ and ‖=‖ are well defined functions from VB×VB to B.

It can be shown that the B-valued relations ‖‖ and ‖=‖ on VB make VB into a Boolean-valued model of set theory. Each sentence of first-order set theory with no free variables has a truth value in B; it must be shown that the axioms for equality and all the axioms of ZF set theory (written without free variables) have truth value 1 (the largest element of B). This proof is straightforward, but it is long because there are many different axioms that need to be checked.

Relationship to forcing

[edit]

Set theorists use a technique called forcing to obtain independence results and to construct models of set theory for other purposes. The method was originally developed by Paul Cohen but has been greatly extended since then. In one form, forcing "adds to the universe" a generic subset of a poset, the poset being designed to impose interesting properties on the newly added object. The wrinkle is that (for interesting posets) it can be proved that there simply is no such generic subset of the poset. There are three usual ways of dealing with this:

  • syntactic forcing A forcing relation is defined between elements p of the poset and formulas φ of the forcing language. This relation is defined syntactically and has no semantics; that is, no model is ever produced. Rather, starting with the assumption that ZFC (or some other axiomatization of set theory) proves the independent statement, one shows that ZFC must also be able to prove a contradiction. However, the forcing is "over V"; that is, it is not necessary to start with a countable transitive model. See Kunen (1980) for an exposition of this method.
  • countable transitive models One starts with a countable transitive model M of as much of set theory as is needed for the desired purpose, and that contains the poset. Then there do exist filters on the poset that are generic over M; that is, that meet all dense open subsets of the poset that happen also to be elements of M.
  • fictional generic objects Commonly, set theorists will simply pretend that the poset has a subset that is generic over all of V. This generic object, in nontrivial cases, cannot be an element of V, and therefore "does not really exist". (Of course, it is a point of philosophical contention whether any sets "really exist", but that is outside the scope of the current discussion.) With a little practice this method is useful and reliable, but it can be philosophically unsatisfying.

Boolean-valued models and syntactic forcing

[edit]

Boolean-valued models can be used to give semantics to syntactic forcing; the price paid is that the semantics is not 2-valued ("true or false"), but assigns truth values from some complete Boolean algebra. Given a forcing poset P, there is a corresponding complete Boolean algebra B, often obtained as the collection of regular open subsets of P, where the topology on P is defined by declaring all lower sets open (and all upper sets closed). (Other approaches to constructing B are discussed below.)

Now the order on B (after removing the zero element) can replace P for forcing purposes, and the forcing relation can be interpreted semantically by saying that, for p an element of B and φ a formula of the forcing language,

where ||φ|| is the truth value of φ in VB.

This approach succeeds in assigning a semantics to forcing over V without resorting to fictional generic objects. The disadvantages are that the semantics is not 2-valued, and that the combinatorics of B are often more complicated than those of the underlying poset P.

Boolean-valued models and generic objects over countable transitive models

[edit]

One interpretation of forcing starts with a countable transitive model M of ZF set theory, a partially ordered set P, and a "generic" subset G of P, and constructs a new model of ZF set theory from these objects. (The conditions that the model be countable and transitive simplify some technical problems, but are not essential.) Cohen's construction can be carried out using Boolean-valued models as follows.

  • Construct a complete Boolean algebra B as the complete Boolean algebra "generated by" the poset P.
  • Construct an ultrafilter U on B (or equivalently a homomorphism from B to the Boolean algebra {true, false}) from the generic subset G of P.
  • Use the homomorphism from B to {true, false} to turn the Boolean-valued model MB of the section above into an ordinary model of ZF.

We now explain these steps in more detail.

For any poset P there is a complete Boolean algebra B and a map e from P to B+ (the non-zero elements of B) such that the image is dense, e(p)≤e(q) whenever pq, and e(p)e(q)=0 whenever p and q are incompatible. This Boolean algebra is unique up to isomorphism. It can be constructed as the algebra of regular open sets in the topological space of P (with underlying set P, and a base given by the sets Up of elements q with qp).

The map from the poset P to the complete Boolean algebra B is not injective in general. The map is injective if and only if P has the following property: if every rp is compatible with q, then pq.

The ultrafilter U on B is defined to be the set of elements b of B that are greater than some element of (the image of) G. Given an ultrafilter U on a Boolean algebra, we get a homomorphism to {true, false} by mapping U to true and its complement to false. Conversely, given such a homomorphism, the inverse image of true is an ultrafilter, so ultrafilters are essentially the same as homomorphisms to {true, false}. (Algebraists might prefer to use maximal ideals instead of ultrafilters: the complement of an ultrafilter is a maximal ideal, and conversely the complement of a maximal ideal is an ultrafilter.)

If g is a homomorphism from a Boolean algebra B to a Boolean algebra C and MB is any B-valued model of ZF (or of any other theory for that matter) we can turn MB into a C-valued model by applying the homomorphism g to the value of all formulas. In particular if C is {true, false} we get a {true, false}-valued model. This is almost the same as an ordinary model: in fact we get an ordinary model on the set of equivalence classes under || = || of a {true, false}-valued model. So we get an ordinary model of ZF set theory by starting from M, a Boolean algebra B, and an ultrafilter U on B. (The model of ZF constructed like this is not transitive. In practice one applies the Mostowski collapsing theorem to turn this into a transitive model.)

We have seen that forcing can be done using Boolean-valued models, by constructing a Boolean algebra with ultrafilter from a poset with a generic subset. It is also possible to go back the other way: given a Boolean algebra B, we can form a poset P of all the nonzero elements of B, and a generic ultrafilter on B restricts to a generic set on P. So the techniques of forcing and Boolean-valued models are essentially equivalent.

Notes

[edit]
  1. ^ a b B here is assumed to be nondegenerate; that is, 0 and 1 must be distinct elements of B. Authors writing on Boolean-valued models typically take this requirement to be part of the definition of "Boolean algebra", but authors writing on Boolean algebras in general often do not.

References

[edit]
  • Bell, J. L. (1985) Boolean-Valued Models and Independence Proofs in Set Theory, Oxford. ISBN 0-19-853241-5
  • Grishin, V.N. (2001) [1994], "Boolean-valued model", Encyclopedia of Mathematics, EMS Press
  • Jech, Thomas (2002). Set theory, third millennium edition (revised and expanded). Springer. ISBN 3-540-44085-2. OCLC 174929965.
  • Kunen, Kenneth (1980). Set Theory: An Introduction to Independence Proofs. North-Holland. ISBN 0-444-85401-0. OCLC 12808956.
  • Kusraev, A. G. and S. S. Kutateladze (1999). Boolean Valued Analysis. Kluwer Academic Publishers. ISBN 0-7923-5921-6. OCLC 41967176. Contains an account of Boolean-valued models and applications to Riesz spaces, Banach spaces and algebras.
  • Manin, Yu. I. (1977). A Course in Mathematical Logic. Springer. ISBN 0-387-90243-0. OCLC 2797938. Contains an account of forcing and Boolean-valued models written for mathematicians who are not set theorists.
  • Rosser, J. Barkley (1969). Simplified Independence Proofs, Boolean valued models of set theory. Academic Press.
阴道口发白是什么原因 alp医学上是什么意思 男生为什么喜欢女生叫爸爸 小姑娘月经推迟不来什么原因 草酸是什么
排卵试纸什么时候测最准确 反流性咽喉炎吃什么药最好 什么级别可以配秘书 非经期出血是什么原因 10月底是什么星座
睡觉口干是什么原因 头皮脂溢性皮炎用什么洗发水 减肥中午吃什么比较好 猪肝可以钓什么鱼 120是什么意思
nice什么意思 什么是公职人员 左胸口疼是什么原因 ky是什么 天麻什么味道
喝竹叶水有什么好处hcv8jop7ns4r.cn 额头疼是什么原因hcv8jop6ns7r.cn 冠心病做什么检查tiangongnft.com 疝囊是什么hcv8jop2ns3r.cn 刚拔完牙需要注意什么gysmod.com
cmyk代表什么颜色wmyky.com 伏羲姓什么hcv8jop3ns6r.cn 有什么鱼hcv9jop1ns9r.cn 经常感冒的人吃什么能增强抵抗力hcv7jop9ns4r.cn 年柱比肩是什么意思hcv8jop9ns0r.cn
橘色五行属什么hcv8jop4ns5r.cn 东北方向五行属什么hcv8jop5ns9r.cn 小猫感冒吃什么药hcv8jop6ns0r.cn 头发染什么颜色显皮肤白显年轻hcv7jop6ns9r.cn 偏头痛不能吃什么食物hcv9jop1ns7r.cn
beast什么意思qingzhougame.com nse是什么意思hcv9jop2ns4r.cn 核桃壳有什么用hcv9jop5ns5r.cn 宠物蛇吃什么hcv9jop4ns1r.cn 羊水是什么颜色的hcv8jop6ns4r.cn
百度