心律平又叫什么名字| 肟是什么意思| 套牌车是什么意思| 室早是什么意思| 尿液有泡沫是什么原因| 人类的祖先是什么| 狼毒是什么| 肛门出血是什么原因| 为什么生理期过后最容易掉秤| 山及念什么| 乳腺增生是什么原因引起的| zing是什么意思| 什么的姑娘| 衔接班是什么意思| 生姜黄叶病用什么药| 十羊九不全是什么意思| 白头发补什么维生素| 慎重考虑是什么意思| 上午11点是什么时辰| 尿道炎吃什么药比较好的快| 见多识广是什么生肖| 大腿出汗是什么原因| 什么叫湿热| 农历五月的别称是什么| 爸爸过生日送什么礼物| 反流性食管炎吃什么中药| 生物工程学什么| 5像什么| 化疗后吃什么增加白细胞| 丑未相冲的结果是什么| hda是什么| 什么体质不易怀孕| 金字旁和什么有关| 西游记告诉我们什么道理| 平光镜是什么意思| 灵芝孢子粉什么时候吃最好| 小确幸是什么意思| 男性夜间盗汗什么原因| 激光脱毛和冰点脱毛有什么区别| 霉菌性阴炎用什么药好得快| 侧记是什么意思| 拍肺片挂什么科| 福星高照是什么生肖| 现在是吃什么水果的季节| 别人梦见我死了是什么意思| 画龙点睛指什么生肖| 乔迁送什么礼物| 白细胞低是什么原因| 胃大肚子大是什么原因| 胆固醇高不可以吃什么| 小鸟站在高压线上为什么不会触电| 桃李满天下的桃李是什么意思| 胃溃疡吃什么水果好| 胆汁淤积症有什么症状| 9月3日是什么星座的| 大熊猫的尾巴是什么颜色| 总做噩梦是什么原因| 第一磨牙什么时候换| 颈椎骨质增生吃什么药效果好| 阴囊痒是什么原因| 早孕挂什么科检查| 刘胡兰是什么样的人| 孕妇吃西红柿对胎儿有什么好处| 排斥一个人什么意思| 阴道疼痛什么原因| 什么什么的沙滩| 覆盆子有什么功效| 我们在干什么| 一个月一个屯念什么| 头发多剪什么发型好看| 脾胃虚寒吃什么中成药| 猪狗不如是什么生肖| 阿尔茨海默症是什么症状| 特步属于什么档次| 正月十八是什么星座| 屁股痛是什么引起的| 牡蛎是什么东西| 牙发黑是什么原因怎么办| 吃什么记忆力增强| 为什么会得甲减| 蚕豆病是什么| 支线是什么意思| 作壁上观什么意思| 什么的点头| 胰岛素抵抗是什么意思| 什么鸣什么盗| 这是什么踏板| 多囊是什么原因造成的| 不动明王是什么属相的本命佛| cini是什么意思| 膝盖疼是什么原因| 七月十六是什么日子| 开塞露是什么成分| 明年什么生肖| 脚肿了是什么原因引起的| 五月初是什么星座| 白天尿少晚上尿多什么原因| c7是什么意思| 柏拉图式是什么意思| 天生丽质什么意思| 什么的飞机| 4月19是什么星座| 门当户对指的是什么| 什么龙可以横行霸道| 10月12是什么星座| 脑袋疼是什么原因| 秋后问斩是什么意思| 黑色碳素笔是什么笔| 1963年属什么| 九锡是什么意思| 75岁属什么| uno是什么| 吸毒是什么感觉| 精神什么| 经期吃什么| 女人阴部黑是什么原因| 公安局大队长是什么级别| 胃出血吃什么药| 为什么会偏头痛| 表水是什么意思| 肝火旺会出现什么症状| 一级军士长相当于什么级别| 奶茶妹是什么意思| 风声鹤唳的意思是什么| cpc是什么| 哥字五行属什么| 什么动物没有骨头| 为什么人一瘦就会漂亮| 牛骨头炖什么好吃| 鱼什么时候产卵| 夏至节气吃什么| 1.8号是什么星座| 头孢什么样子图片| 肾功能三项检查什么| 紫微斗数是什么| 痔疮很痒是什么原因| 脚底板脱皮是什么原因| 宋威龙什么星座| jf是什么警察| 不见棺材不落泪是什么生肖| 苦瓜煮水喝有什么功效| 芝五行属什么| 530是什么意思| 女性睾酮低说明什么| 腮腺炎反复发作是什么原因| 口干是什么原因| 早上吃鸡蛋有什么好处| 精液发黄是什么原因| 寄居蟹吃什么食物| 什么药膏可以去黑头| 嫐什么意思| 波长是什么| 茉莉花茶属于什么茶类| 膝盖凉是什么原因| 宝宝上颚有白点是什么| 评头论足什么意思| 三无是什么意思| 哑巴是什么生肖| 兔儿爷是什么意思| 杨梅有什么功效和作用| 什么叫多重耐药菌| 8月23日是什么星座| 肛门胀痛什么原因| 个子矮吃什么才能长高| 禁的拼音是什么| 市场部是做什么的| 男属龙和什么属相最配| 吃大虾不能吃什么| ng是什么单位| 氨酶偏高是什么意思| 藕粉对身体有什么好处| imp是什么意思| 什么心什么目| 腰椎间盘突出压迫神经吃什么药| 什么病才查凝血四项呢| 九转大肠是什么菜系| 为什么白醋把纹身洗掉了| 拉尿分叉是什么原因| 湿疹怎么治用什么药膏| 雷什么风什么成语| 不约什么什么| 水乳是什么| 月经什么颜色的血是正常的| 阿胶是什么做的| 为道日损什么意思| 长沙有什么景点| 牙齿痛吃什么| 黑猫警长是什么猫| 男人眉毛短是什么面相| 7月17号什么星座| 扁桃体发炎是什么原因引起的| 得莫利是什么意思| 吃什么水果对嗓子好| 浮躁的意思是什么| lgbtq是什么意思| 耳毛念什么| 肌酸激酶偏高说明什么| 血常规主要检查什么| 宝宝吃什么增强抵抗力| 大学记过处分有什么影响| 一加是什么品牌| 大小脸是什么原因造成的| 打耳洞医院挂什么科| 甘油三酯高不能吃什么| 肠炎吃什么消炎药| 泡果酒用什么酒好| hx是什么| 蜂蜡是什么东西| 白细胞偏低是什么病| 妙哉妙哉是什么意思| as是什么元素| 病毒性肠炎吃什么药| 奥康属于什么档次| 天什么地| 肿气肿用什么药比较好| 冷艳是什么意思| 流汗多是什么原因| 送老师什么礼物好| 沙僧的武器是什么| 梦里梦到蛇有什么预兆| 女性睾酮高意味着什么| 书中自有颜如玉什么意思| 牙疼是什么原因| 心阳虚吃什么药| 水车是什么意思| 火文念什么| 什么云见日| 梦见知了猴是什么意思| 巴字加一笔是什么字| 手肿胀是什么原因| 么么叽是什么意思| 口干什么原因| 白内障是什么引起的| 促排卵针什么时候打| 双子座有什么特点| 火车票改签是什么意思| 肾精亏虚吃什么药最好| 空腹血糖17已经严重到什么时候| 嘴巴里长水泡是什么原因| 1月16日是什么星座| 中联办是什么级别| 性格好的女生是什么样| 阳痿早泄吃什么药好| 梦见桥塌了有什么预兆| 驻村是什么意思| 求欢是什么意思| 在农村做什么生意好| 什么的雨| 右边肋骨疼是什么原因| 经常饿肚子会导致什么后果| 牛仔裙配什么上衣好看| 终端是什么意思| 海苔吃多了有什么坏处| 什么样的池塘| 月亮为什么会发光| 惘然什么意思| 脾胃挂什么科| 蝙蝠吃什么食物| 昭字五行属什么| 香港为什么不用人民币| 樱桃红是什么颜色| 线索细胞阳性是什么意思| 女人喝什么调节内分泌| 藏青色t恤配什么颜色裤子| 百度Jump to content

China raises basic pension payments by 5 pct

From Wikipedia, the free encyclopedia
(Figure 1) Illustration of the Euler method. The unknown curve is in blue, and its polygonal approximation is in red.
百度 做了四届人大代表的谭旭光无疑是后者,是非功过如何评,他都是一个印记难消的标志性人物。

In mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who first proposed it in his book Institutionum calculi integralis (published 1768–1770).[1]

The Euler method is a first-order method, which means that the local error (error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size. The Euler method often serves as the basis to construct more complex methods, e.g., predictor–corrector method.

Geometrical description

[edit]

Purpose and why it works

[edit]

Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.

The idea is that while the curve is initially unknown, its starting point, which we denote by is known (see Figure 1). Then, from the differential equation, the slope to the curve at can be computed, and so, the tangent line.

Take a small step along that tangent line up to a point Along this small step, the slope does not change too much, so will be close to the curve. If we pretend that is still on the curve, the same reasoning as for the point above can be used. After several steps, a polygonal curve () is computed. In general, this curve does not diverge too far from the original unknown curve, and the error between the two curves can be made small if the step size is small enough and the interval of computation is finite.[2]

First-order process

[edit]

When given the values for and , and the derivative of is a given function of and denoted as . Begin the process by setting . Next, choose a value for the size of every step along t-axis, and set (or equivalently ). Now, the Euler method is used to find from and :[3]

The value of is an approximation of the solution at time , i.e., . The Euler method is explicit, i.e. the solution is an explicit function of for .

Higher-order process

[edit]

While the Euler method integrates a first-order ODE, any ODE of order can be represented as a system of first-order ODEs. When given the ODE of order defined as

as well as , , and , we implement the following formula until we reach the approximation of the solution to the ODE at the desired time:

These first-order systems can be handled by Euler's method or, in fact, by any other scheme for first-order systems.[4]

First-order example

[edit]

Given the initial value problem

we would like to use the Euler method to approximate .[5]

Using step size equal to 1 (h = 1)

[edit]
(Figure 2) Illustration of numerical integration for the equation Blue is the Euler method; green, the midpoint method; red, the exact solution, The step size is

The Euler method is

so first we must compute . In this simple differential equation, the function is defined by . We have

By doing the above step, we have found the slope of the line that is tangent to the solution curve at the point . Recall that the slope is defined as the change in divided by the change in , or .

The next step is to multiply the above value by the step size , which we take equal to one here:

Since the step size is the change in , when we multiply the step size and the slope of the tangent, we get a change in value. This value is then added to the initial value to obtain the next value to be used for computations.

The above steps should be repeated to find , and .

Due to the repetitive nature of this algorithm, it can be helpful to organize computations in a chart form, as seen below, to avoid making errors.

0 1 0 1 1 1 2
1 2 1 2 1 2 4
2 4 2 4 1 4 8
3 8 3 8 1 8 16

The conclusion of this computation is that . The exact solution of the differential equation is , so . Although the approximation of the Euler method was not very precise in this specific case, particularly due to a large value step size , its behaviour is qualitatively correct as the figure shows.

Using other step sizes

[edit]
(Figure 3) The same illustration for

As suggested in the introduction, the Euler method is more accurate if the step size is smaller. The table below shows the result with different step sizes. The top row corresponds to the example in the previous section, and the second row is illustrated in the figure.

step size result of Euler's method error
1 16.00 38.60
0.25 35.53 19.07
0.1 45.26 9.34
0.05 49.56 5.04
0.025 51.98 2.62
0.0125 53.26 1.34

The error recorded in the last column of the table is the difference between the exact solution at and the Euler approximation. In the bottom of the table, the step size is half the step size in the previous row, and the error is also approximately half the error in the previous row. This suggests that the error is roughly proportional to the step size, at least for fairly small values of the step size. This is true in general, also for other equations; see the section Global truncation error for more details.

Other methods, such as the midpoint method also illustrated in the figures, behave more favourably: the global error of the midpoint method is roughly proportional to the square of the step size. For this reason, the Euler method is said to be a first-order method, while the midpoint method is second order.

We can extrapolate from the above table that the step size needed to get an answer that is correct to three decimal places is approximately 0.00001, meaning that we need 400,000 steps. This large number of steps entails a high computational cost. For this reason, higher-order methods are employed such as Runge–Kutta methods or linear multistep methods, especially if a high accuracy is desired.[6]

Higher-order example

[edit]

For this third-order example, assume that the following information is given:

From this we can isolate y''' to get the equation:

Using that we can get the solution for :And using the solution for , we can get the solution for :We can continue this process using the same formula as long as necessary to find whichever desired.

Derivation

[edit]

The Euler method can be derived in a number of ways.

(1) Firstly, there is the geometrical description above.

(2) Another possibility is to consider the Taylor expansion of the function around :

The differential equation states that . If this is substituted in the Taylor expansion and the quadratic and higher-order terms are ignored, the Euler method arises.[7]

The Taylor expansion is used below to analyze the error committed by the Euler method, and it can be extended to produce Runge–Kutta methods.

(3) A closely related derivation is to substitute the forward finite difference formula for the derivative,

in the differential equation . Again, this yields the Euler method.[8]

A similar computation leads to the midpoint method and the backward Euler method.

(4) Finally, one can integrate the differential equation from to and apply the fundamental theorem of calculus to get:

Now approximate the integral by the left-hand rectangle method (with only one rectangle):

Combining both equations, one finds again the Euler method.[9]


This line of thought can be continued to arrive at various linear multistep methods.

Local truncation error

[edit]

The local truncation error of the Euler method is the error made in a single step. It is the difference between the numerical solution after one step, , and the exact solution at time . The numerical solution is given by

For the exact solution, we use the Taylor expansion mentioned in the section Derivation above:

The local truncation error (LTE) introduced by the Euler method is given by the difference between these equations:

This result is valid if has a bounded third derivative.[10]

This shows that for small , the local truncation error is approximately proportional to . This makes the Euler method less accurate than higher-order techniques such as Runge–Kutta methods and linear multistep methods, for which the local truncation error is proportional to a higher power of the step size.

A slightly different formulation for the local truncation error can be obtained by using the Lagrange form for the remainder term in Taylor's theorem. If has a continuous second derivative, then there exists a such that

[11]

In the above expressions for the error, the second derivative of the unknown exact solution can be replaced by an expression involving the right-hand side of the differential equation. Indeed, it follows from the equation that[12]

Global truncation error

[edit]

The global truncation error is the error at a fixed time , after however many steps the method needs to take to reach that time from the initial time. The global truncation error is the cumulative effect of the local truncation errors committed in each step.[13] The number of steps is easily determined to be , which is proportional to , and the error committed in each step is proportional to (see the previous section). Thus, it is to be expected that the global truncation error will be proportional to .[14]

This intuitive reasoning can be made precise. If the solution has a bounded second derivative and is Lipschitz continuous in its second argument, then the global truncation error (denoted as ) is bounded by

where is an upper bound on the second derivative of on the given interval and is the Lipschitz constant of .[15] Or more simply, when , the value (such that is treated as a constant). In contrast, where function is the exact solution which only contains the variable.

The precise form of this bound is of little practical importance, as in most cases the bound vastly overestimates the actual error committed by the Euler method.[16] What is important is that it shows that the global truncation error is (approximately) proportional to . For this reason, the Euler method is said to be first order.[17]

Example

[edit]

If we have the differential equation , and the exact solution , and we want to find and for when . Thus we can find the error bound at t=2.5 and h=0.5:

Notice that t0 is equal to 2 because it is the lower bound for t in .

Numerical stability

[edit]
(Figure 4) Solution of computed with the Euler method with step size (blue squares) and (red circles). The black curve shows the exact solution.

The Euler method can also be numerically unstable, especially for stiff equations, meaning that the numerical solution grows very large for equations where the exact solution does not. This can be illustrated using the linear equation

The exact solution is , which decays to zero as . However, if the Euler method is applied to this equation with step size , then the numerical solution is qualitatively wrong: It oscillates and grows (see the figure). This is what it means to be unstable. If a smaller step size is used, for instance , then the numerical solution does decay to zero.

(Figure 5) The pink disk shows the stability region for the Euler method.

If the Euler method is applied to the linear equation , then the numerical solution is unstable if the product is outside the region

illustrated on the right. This region is called the (linear) stability region.[18] In the example, , so if then which is outside the stability region, and thus the numerical solution is unstable.

This limitation — along with its slow convergence of error with — means that the Euler method is not often used, except as a simple example of numerical integration[citation needed]. Frequently models of physical systems contain terms representing fast-decaying elements (i.e. with large negative exponential arguments). Even when these are not of interest in the overall solution, the instability they can induce means that an exceptionally small timestep would be required if the Euler method is used.

Rounding errors

[edit]

In step of the Euler method, the rounding error is roughly of the magnitude where is the machine epsilon. Assuming that the rounding errors are independent random variables, the expected total rounding error is proportional to .[19] Thus, for extremely small values of the step size the truncation error will be small but the effect of rounding error may be big. Most of the effect of rounding error can be easily avoided if compensated summation is used in the formula for the Euler method.[20]

Modifications and extensions

[edit]

A simple modification of the Euler method which eliminates the stability problems noted above is the backward Euler method:

This differs from the (standard, or forward) Euler method in that the function is evaluated at the end point of the step, instead of the starting point. The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.

Other modifications of the Euler method that help with stability yield the exponential Euler method or the semi-implicit Euler method.

More complicated methods can achieve a higher order (and more accuracy). One possibility is to use more function evaluations. This is illustrated by the midpoint method which is already mentioned in this article:

.

This leads to the family of Runge–Kutta methods.

The other possibility is to use more past values, as illustrated by the two-step Adams–Bashforth method:

This leads to the family of linear multistep methods. There are other modifications which uses techniques from compressive sensing to minimize memory usage[21]

[edit]

In the film Hidden Figures, Katherine Johnson resorts to the Euler method in calculating the re-entry of astronaut John Glenn from Earth orbit.[22]

See also

[edit]

Notes

[edit]
  1. ^ Butcher 2003, p. 45; Hairer, N?rsett & Wanner 1993, p. 35
  2. ^ Atkinson 1989, p. 342; Butcher 2003, p. 60
  3. ^ Butcher 2003, p. 45; Hairer, N?rsett & Wanner 1993, p. 36
  4. ^ Butcher 2003, p. 3; Hairer, N?rsett & Wanner 1993, p. 2
  5. ^ See also Atkinson 1989, p. 344
  6. ^ Hairer, N?rsett & Wanner 1993, p. 40
  7. ^ Atkinson 1989, p. 342; Hairer, N?rsett & Wanner 1993, p. 36
  8. ^ Atkinson 1989, p. 342
  9. ^ Atkinson 1989, p. 343
  10. ^ Butcher 2003, p. 60
  11. ^ Atkinson 1989, p. 342
  12. ^ Stoer & Bulirsch 2002, p. 474
  13. ^ Atkinson 1989, p. 344
  14. ^ Butcher 2003, p. 49
  15. ^ Atkinson 1989, p. 346; Lakoba 2012, equation (1.16)
  16. ^ Iserles 1996, p. 7
  17. ^ Butcher 2003, p. 63
  18. ^ Butcher 2003, p. 70; Iserles 1996, p. 57
  19. ^ Butcher 2003, pp. 74–75
  20. ^ Butcher 2003, pp. 75–78
  21. ^ Unni, M. P.; Chandra, M. G.; Kumar, A. A. (March 2017). "Memory reduction for numerical solution of differential equations using compressive sensing". 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA). pp. 79–84. doi:10.1109/CSPA.2017.8064928. ISBN 978-1-5090-1184-1. S2CID 13082456.
  22. ^ Khan, Amina (9 January 2017). "Meet the 'Hidden Figures' mathematician who helped send Americans into space". Los Angeles Times. Retrieved 12 February 2017.

References

[edit]
[edit]
George是什么意思 黑色裤子配什么颜色t恤 ons是什么 小腿酸软无力是什么原因 kkkk是什么意思
清秀是什么意思 什么人适合吃红参 回肠荡气什么意思 诸葛亮长什么样 手腕疼痛是什么原因
更是什么结构的字 苹果5s什么时候上市的 摩拳擦掌是什么生肖 为什么突然对鸡蛋过敏 谷氨酸钠是什么添加剂
吃什么排便顺畅 幽门螺旋杆菌的症状吃什么药 懿怎么读 什么意思 聪明的人有什么特征 受害者是什么意思
玉和玉髓有什么区别hcv8jop6ns3r.cn 踢皮球是什么意思hcv9jop1ns5r.cn as材质是什么材料hcv8jop0ns3r.cn 睡眠不好用什么泡脚助于睡眠jingluanji.com 戏梦巴黎讲的是什么hcv7jop4ns7r.cn
黄体破裂是什么原因fenrenren.com 什么木材有香味hcv8jop1ns7r.cn 阳历是什么意思hcv9jop6ns7r.cn 乾隆和康熙是什么关系hcv9jop4ns7r.cn 淋巴结为什么会肿大beikeqingting.com
鬼剃头是因为什么原因引起的hcv9jop4ns8r.cn 结节状高密度影是什么意思hcv9jop5ns5r.cn 什么叶子hcv9jop1ns4r.cn 肾的作用和功能是什么hcv9jop3ns6r.cn 月色真美是什么意思hcv8jop1ns3r.cn
乳腺彩超挂什么科hcv9jop0ns9r.cn 1954年属什么hcv8jop7ns6r.cn 森林里有什么hcv9jop6ns3r.cn 支原体吃什么药hcv8jop1ns1r.cn 小孩头发黄是什么原因hcv7jop5ns6r.cn
百度