什么食物含钾最高| 野生刺猬吃什么食物| 朋友生日送什么礼物好| 猪咳嗽用什么药好得快| 做梦梦见狗咬我什么意思啊| 丙球是什么| 人为什么要睡觉| 湿疹是因为什么原因引起的| 主动脉夹层a型是什么病| 3价铁离子是什么颜色| 自学成才是什么意思| 酪蛋白是什么| 为什么女的会流水怎么回事| 饺子有什么馅| 区团委书记是什么级别| ef是什么意思| 早泄用什么药| 生物医学工程专业学什么| 蜂蜜跟什么不能一起吃| 遇人不淑什么意思| 成人改名字需要什么手续| 梦见晒被子是什么意思| 六子是什么意思| 睡觉流口水是什么原因引起的| 银针白毫是什么茶| 日加立念什么| 孕妇建档是什么意思| 月经快来了有什么征兆| 椰子煲鸡汤放什么材料| 小狗能看见什么颜色| 为什么早上起来血压高| 朱元璋什么星座| cj是什么| 母乳是什么味道| 什么什么的太阳| 黄芪喝多了有什么副作用| 吃茶叶蛋有什么好处和坏处| s和m是什么意思| 两女 一杯是什么| 女人吃什么能活血化瘀| 黄皮适合什么颜色的衣服| 郑板桥是什么生肖| 仓鼠能吃什么| 九月有什么节日| onlycook是什么牌子| 小腹左边疼是什么原因| 图谋不轨什么意思| 吃什么容易怀孕| 季字五行属什么| 1996五行属什么| 属虎的和什么属相最配| yjs是什么意思| 大堤是什么意思| 水潴留是什么意思| 东方不败练的什么武功| 海尔兄弟叫什么| 小壁虎的尾巴有什么作用| 小清新是什么意思啊| 西游记有什么故事| 69什么意思| 乳腺增生挂什么科| 容易受惊吓是什么原因| 共建是什么意思| 植物神经紊乱挂什么科| 最大的海是什么海| 阴郁是什么意思| 什么是纯净水| 女性阴部痒是什么原因| ami是什么| 黛是什么颜色| 拌嘴是什么意思| 肛门有灼烧感什么原因| 木鱼是什么意思| 鱼最喜欢吃什么| 唾液酸苷酶阳性什么意思| 民考民是什么意思| 镭是什么| 晚上三点是什么时辰| 部署是什么意思| 宫颈机能不全是什么原因造成的| 训练有素是什么意思| 什么饼干养胃最好| 儿童脾胃不好吃什么调理脾胃| 终板炎是什么病| 什么是睡眠障碍| 小巧玲珑是什么意思| 男人性功能不行是什么原因| 脚抽筋吃什么药| 唾液酸苷酶阳性什么意思| 合欢是什么意思| 殊胜的意思是什么| 西游记有什么故事| 08年属什么生肖| 早上十点是什么时辰| 95什么意思| 喝啤酒尿多是什么原因| lily是什么牌子| 胆囊炎吃什么药效果最好| 小孩头晕是什么原因| 梦见别人吐血是什么预兆| 脚心疼什么原因| 凉面是用什么面做的| bpo是什么意思| 移动增值业务费是什么| 试金石什么意思| 什么的后羿| 什么水果维生素c含量最高| 登革热是什么| ur品牌属于什么档次| 为什么会长丝状疣| 小麦什么时候成熟| ehe是什么牌子| 红领巾的含义是什么| 芒果有什么功效| 短发适合什么脸型| 肌醇是什么| 白头翁是什么动物| 扒拉是什么意思| 女人吃鹅蛋有什么好处| 射手座属于什么星象| 全科是什么科| 吃什么补硒最快最好| 抄手是什么| 辅弼是什么意思| 照身份证穿什么衣服| 什么是粗粮食物有哪些| 劳动局全称叫什么| 叶酸片什么时候吃最好| 怎么判断脸上是什么斑| 认知是什么| 泌尿系统由什么组成| beast什么意思| 2018年属什么生肖| 结界是什么意思| 什么样的沙滩| 孩子拉肚子吃什么药| 长豆角叫什么| 什么的什么好吃| 神经性皮炎用什么药膏效果最好| 什么体质容易长结石| 枪代表什么生肖| 什么是颈椎病| aa是什么| 缺钾吃什么药| 四肢发达是什么生肖| 母公司是什么意思| 海参多少头是什么意思| 女性口苦是什么原因引起的| 78年属什么| 产前诊断是检查什么| 未加一笔是什么字| 手指发白是什么原因| 河南南阳产什么玉| 月经量少吃什么调理| 孔雀男是什么意思| 辟谷是什么都不吃吗| 婴儿奶粉过敏有什么症状| 狗狗为什么喜欢舔人| 龟头炎用什么药| 肝硬化吃什么食物好| 梦见吃西红柿是什么意思| 蛋糕用什么面粉| 牛牛是什么| 手抖挂什么科室| 小样什么意思| 心悸什么意思| 六月十四是什么星座| ppap是什么| 天蝎座喜欢什么样的女生| hi是什么意思| 缺血灶是什么意思| 呦呦鹿鸣什么意思| 绞股蓝有什么作用| 打嗝是什么意思| 地软有什么功效和作用| 稼穑是什么意思| 杭州落户需要什么条件| 属猴本命佛是什么佛| 泪点低什么意思| 睡觉手麻木是什么原因| 普高和职高有什么区别| 香榧是什么东西| 夹不住尿是什么原因| 梦见大蛇是什么意思| 什么叫浪漫| 煮花生放什么调料好吃| toshiba是什么牌子| 火龙果吃了有什么好处| 右肺疼是什么原因| 揣测是什么意思| 脑门发黑是什么原因| 内能是什么| rinnai是什么品牌| 隆胸有什么危害和后遗症吗| 肝功能七项是检查什么| 咳嗽背部疼是什么原因| 身在其位必谋其职是什么意思| 狗屎运是什么意思| 看肠胃挂什么科室| 拉肚子吃什么抗生素| 葡萄球菌是什么| 叶酸片有什么功效| 三教九流指的是什么| 空降是什么意思| 梨子煮水喝有什么功效| 小马拉大车什么意思| 什么药可以溶解血栓| 破伤风什么时候打最好| 居住证有什么用| 笋壳鱼是什么鱼| 左卡尼汀口服溶液主要治疗什么| 水便分离的原因是什么| 闭目养神什么意思| 干碟是什么| 社保缴费基数和工资有什么关系| 肺间质纤维化是什么病| 沙葱是什么| 保胎针是什么药| 什么是性上瘾| 双鱼座和什么星座最配| b是什么单位| 日可以加什么偏旁| 大本营是什么意思| 容易出汗是什么问题| 学架子鼓有什么好处| 塑料袋是什么垃圾| 室上速是什么病| 一什么桌子| 暗娼什么意思| 三伏天吃什么水果好| 宽字五行属什么| 奉子成婚是什么意思| fy是什么意思| 月经老是推后是什么原因| 性早熟有什么症状| 手上长毛是什么原因| 吃什么能降低尿蛋白| 什么是物理| 什么是值机| 时间的定义是什么| 13年属什么| 16是什么生肖| 脚麻吃什么药有效| 胆水是什么| 结膜囊在眼睛什么位置| 谐星是什么意思| 你有毒是什么意思| 心脏早搏是什么原因造成的| ab型血生的孩子是什么血型| 离婚要什么手续| 郑中基为什么叫太子基| 喝茶叶茶有什么好处和坏处| 胃炎吃什么最好| 你的名字讲的什么故事| 恶对什么| 塞药塞到什么位置| s925是什么意思| 尿素酶阳性什么意思| 晚上喝蜂蜜水有什么好处| 夏天感冒吃什么药| 泡脚时间长了有什么坏处| 间歇性跛行是什么意思| 什么是内卷| 嘴歪是什么引起的| 百度Jump to content

【理上网来】以伟大精神续写中华民族的新辉煌

From Wikipedia, the free encyclopedia
百度 同时,如果孕妇在孕前就有失眠、打呼噜等睡眠问题,此时这些状况会更为加重,甚至可能出现呼吸暂停的情况。

An example FFT algorithm structure, using a decomposition into half-size FFTs
A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa.

The DFT is obtained by decomposing a sequence of values into components of different frequencies.[1] This operation is useful in many fields, but computing it directly from the definition is often too slow to be practical. An FFT rapidly computes such transformations by factorizing the DFT matrix into a product of sparse (mostly zero) factors.[2] As a result, it manages to reduce the complexity of computing the DFT from , which arises if one simply applies the definition of DFT, to , where n is the data size. The difference in speed can be enormous, especially for long data sets where n may be in the thousands or millions.

As the FFT is merely an algebraic refactoring of terms within the DFT, the DFT and the FFT both perform mathematically equivalent and interchangeable operations, assuming that all terms are computed with infinite precision. However, in the presence of round-off error, many FFT algorithms are much more accurate than evaluating the DFT definition directly or indirectly.

Time-based representation (above) and frequency-based representation (below) of the same signal, where the lower representation can be obtained from the upper one by Fourier transformation

Fast Fourier transforms are widely used for applications in engineering, music, science, and mathematics. The basic ideas were popularized in 1965, but some algorithms had been derived as early as 1805.[1] In 1994, Gilbert Strang described the FFT as "the most important numerical algorithm of our lifetime",[3][4] and it was included in Top 10 Algorithms of 20th Century by the IEEE magazine Computing in Science & Engineering.[5]

There are many different FFT algorithms based on a wide range of published theories, from simple complex-number arithmetic to group theory and number theory. The best-known FFT algorithms depend upon the factorization of n, but there are FFTs with complexity for all, even prime, n. Many FFT algorithms depend only on the fact that is an nth primitive root of unity, and thus can be applied to analogous transforms over any finite field, such as number-theoretic transforms. Since the inverse DFT is the same as the DFT, but with the opposite sign in the exponent and a 1/n factor, any FFT algorithm can easily be adapted for it.

History

[edit]

The development of fast algorithms for DFT was prefigured in Carl Friedrich Gauss's unpublished 1805 work on the orbits of asteroids Pallas and Juno. Gauss wanted to interpolate the orbits from sample observations;[6][7] his method was very similar to the one that would be published in 1965 by James Cooley and John Tukey, who are generally credited for the invention of the modern generic FFT algorithm. While Gauss's work predated even Joseph Fourier's 1822 results, he did not analyze the method's complexity, and eventually used other methods to achieve the same end.

Between 1805 and 1965, some versions of FFT were published by other authors. Frank Yates in 1932 published his version called interaction algorithm, which provided efficient computation of Hadamard and Walsh transforms.[8] Yates' algorithm is still used in the field of statistical design and analysis of experiments. In 1942, G. C. Danielson and Cornelius Lanczos published their version to compute DFT for x-ray crystallography, a field where calculation of Fourier transforms presented a formidable bottleneck.[9][10] While many methods in the past had focused on reducing the constant factor for computation by taking advantage of symmetries, Danielson and Lanczos realized that one could use the periodicity and apply a doubling trick to "double [n] with only slightly more than double the labor", though like Gauss they did not do the analysis to discover that this led to scaling.[11] In 1958, I. J. Good published a paper establishing the prime-factor FFT algorithm that applies to discrete Fourier transforms of size , where and are coprime.[12]

James Cooley and John Tukey independently rediscovered these earlier algorithms[7] and published a more general FFT in 1965 that is applicable when n is composite and not necessarily a power of 2, as well as analyzing the scaling.[13] Tukey came up with the idea during a meeting of President Kennedy's Science Advisory Committee where a discussion topic involved detecting nuclear tests by the Soviet Union by setting up sensors to surround the country from outside. To analyze the output of these sensors, an FFT algorithm would be needed. In discussion with Tukey, Richard Garwin recognized the general applicability of the algorithm not just to national security problems, but also to a wide range of problems including one of immediate interest to him, determining the periodicities of the spin orientations in a 3-D crystal of Helium-3.[14] Garwin gave Tukey's idea to Cooley (both worked at IBM's Watson labs) for implementation.[15] Cooley and Tukey published the paper in a relatively short time of six months.[16] As Tukey did not work at IBM, the patentability of the idea was doubted and the algorithm went into the public domain, which, through the computing revolution of the next decade, made FFT one of the indispensable algorithms in digital signal processing.

Definition

[edit]

Let be complex numbers. The DFT is defined by the formula

where is a primitive nth root of 1.

Evaluating this definition directly requires operations: there are n outputs Xk?, and each output requires a sum of n terms. An FFT is any method to compute the same results in operations. All known FFT algorithms require operations, although there is no known proof that lower complexity is impossible.[17]

To illustrate the savings of an FFT, consider the count of complex multiplications and additions for data points. Evaluating the DFT's sums directly involves complex multiplications and complex additions, of which operations can be saved by eliminating trivial operations such as multiplications by 1, leaving about 30 million operations. In contrast, the radix-2 Cooley–Tukey algorithm, for n a power of 2, can compute the same result with only complex multiplications (again, ignoring simplifications of multiplications by 1 and similar) and complex additions, in total about 30,000 operations — a thousand times less than with direct evaluation. In practice, actual performance on modern computers is usually dominated by factors other than the speed of arithmetic operations and the analysis is a complicated subject (for example, see Frigo & Johnson, 2005),[18] but the overall improvement from to remains.

Algorithms

[edit]

Cooley–Tukey algorithm

[edit]

By far the most commonly used FFT is the Cooley–Tukey algorithm. This is a divide-and-conquer algorithm that recursively breaks down a DFT of any composite size into smaller DFTs of size , along with multiplications by complex roots of unity traditionally called twiddle factors (after Gentleman and Sande, 1966).[19]

This method (and the general idea of an FFT) was popularized by a publication of Cooley and Tukey in 1965,[13] but it was later discovered[1] that those two authors had together independently re-invented an algorithm known to Carl Friedrich Gauss around 1805[20] (and subsequently rediscovered several times in limited forms).

The best known use of the Cooley–Tukey algorithm is to divide the transform into two pieces of size n/2 at each step, and is therefore limited to power-of-two sizes, but any factorization can be used in general (as was known to both Gauss and Cooley/Tukey[1]). These are called the radix-2 and mixed-radix cases, respectively (and other variants such as the split-radix FFT have their own names as well). Although the basic idea is recursive, most traditional implementations rearrange the algorithm to avoid explicit recursion. Also, because the Cooley–Tukey algorithm breaks the DFT into smaller DFTs, it can be combined arbitrarily with any other algorithm for the DFT, such as those described below.

Other FFT algorithms

[edit]

For with coprime and , one can use the prime-factor (Good–Thomas) algorithm (PFA), based on the Chinese remainder theorem, to factorize the DFT similarly to Cooley–Tukey but without the twiddle factors. The Rader–Brenner algorithm (1976)[21] is a Cooley–Tukey-like factorization but with purely imaginary twiddle factors, reducing multiplications at the cost of increased additions and reduced numerical stability; it was later superseded by the split-radix variant of Cooley–Tukey (which achieves the same multiplication count but with fewer additions and without sacrificing accuracy). Algorithms that recursively factorize the DFT into smaller operations other than DFTs include the Bruun and QFT algorithms. (The Rader–Brenner[21] and QFT algorithms were proposed for power-of-two sizes, but it is possible that they could be adapted to general composite n. Bruun's algorithm applies to arbitrary even composite sizes.) Bruun's algorithm, in particular, is based on interpreting the FFT as a recursive factorization of the polynomial , here into real-coefficient polynomials of the form and .

Another polynomial viewpoint is exploited by the Winograd FFT algorithm,[22][23] which factorizes into cyclotomic polynomials—these often have coefficients of 1, 0, or ?1, and therefore require few (if any) multiplications, so Winograd can be used to obtain minimal-multiplication FFTs and is often used to find efficient algorithms for small factors. Indeed, Winograd showed that the DFT can be computed with only irrational multiplications, leading to a proven achievable lower bound on the number of multiplications for power-of-two sizes; this comes at the cost of many more additions, a tradeoff no longer favorable on modern processors with hardware multipliers. In particular, Winograd also makes use of the PFA as well as an algorithm by Rader for FFTs of prime sizes.

Rader's algorithm, exploiting the existence of a generator for the multiplicative group modulo prime n, expresses a DFT of prime size n as a cyclic convolution of (composite) size n – 1, which can then be computed by a pair of ordinary FFTs via the convolution theorem (although Winograd uses other convolution methods). Another prime-size FFT is due to L. I. Bluestein, and is sometimes called the chirp-z algorithm; it also re-expresses a DFT as a convolution, but this time of the same size (which can be zero-padded to a power of two and evaluated by radix-2 Cooley–Tukey FFTs, for example), via the identity

Hexagonal fast Fourier transform (HFFT) aims at computing an efficient FFT for the hexagonally-sampled data by using a new addressing scheme for hexagonal grids, called Array Set Addressing (ASA).

FFT algorithms specialized for real or symmetric data

[edit]

In many applications, the input data for the DFT are purely real, in which case the outputs satisfy the symmetry

and efficient FFT algorithms have been designed for this situation (see e.g., Sorensen, 1987).[24][25] One approach consists of taking an ordinary algorithm (e.g. Cooley–Tukey) and removing the redundant parts of the computation, saving roughly a factor of two in time and memory. Alternatively, it is possible to express an even-length real-input DFT as a complex DFT of half the length (whose real and imaginary parts are the even/odd elements of the original real data), followed by post-processing operations.

It was once believed that real-input DFTs could be more efficiently computed by means of the discrete Hartley transform (DHT), but it was subsequently argued that a specialized real-input DFT algorithm (FFT) can typically be found that requires fewer operations than the corresponding DHT algorithm (FHT) for the same number of inputs.[24] Bruun's algorithm (above) is another method that was initially proposed to take advantage of real inputs, but it has not proved popular.

There are further FFT specializations for the cases of real data that have even/odd symmetry, in which case one can gain another factor of roughly two in time and memory and the DFT becomes the discrete cosine/sine transform(s) (DCT/DST). Instead of directly modifying an FFT algorithm for these cases, DCTs/DSTs can also be computed via FFTs of real data combined with pre- and post-processing.

Computational issues

[edit]

Bounds on complexity and operation counts

[edit]
Unsolved problem in computer science
What is the lower bound on the complexity of fast Fourier transform algorithms? Can they be faster than ?

A fundamental question of longstanding theoretical interest is to prove lower bounds on the complexity and exact operation counts of fast Fourier transforms, and many open problems remain. It is not rigorously proved whether DFTs truly require (i.e., order or greater) operations, even for the simple case of power of two sizes, although no algorithms with lower complexity are known. In particular, the count of arithmetic operations is usually the focus of such questions, although actual performance on modern-day computers is determined by many other factors such as cache or CPU pipeline optimization.

Following work by Shmuel Winograd (1978),[22] a tight lower bound is known for the number of real multiplications required by an FFT. It can be shown that only irrational real multiplications are required to compute a DFT of power-of-two length . Moreover, explicit algorithms that achieve this count are known (Heideman & Burrus, 1986;[26] Duhamel, 1990[27]). However, these algorithms require too many additions to be practical, at least on modern computers with hardware multipliers (Duhamel, 1990;[27] Frigo & Johnson, 2005).[18]

A tight lower bound is not known on the number of required additions, although lower bounds have been proved under some restrictive assumptions on the algorithms. In 1973, Morgenstern[28] proved an lower bound on the addition count for algorithms where the multiplicative constants have bounded magnitudes (which is true for most but not all FFT algorithms). Pan (1986)[29] proved an lower bound assuming a bound on a measure of the FFT algorithm's asynchronicity, but the generality of this assumption is unclear. For the case of power-of-two n, Papadimitriou (1979)[30] argued that the number of complex-number additions achieved by Cooley–Tukey algorithms is optimal under certain assumptions on the graph of the algorithm (his assumptions imply, among other things, that no additive identities in the roots of unity are exploited). (This argument would imply that at least real additions are required, although this is not a tight bound because extra additions are required as part of complex-number multiplications.) Thus far, no published FFT algorithm has achieved fewer than complex-number additions (or their equivalent) for power-of-two n.

A third problem is to minimize the total number of real multiplications and additions, sometimes called the arithmetic complexity (although in this context it is the exact count and not the asymptotic complexity that is being considered). Again, no tight lower bound has been proven. Since 1968, however, the lowest published count for power-of-two n was long achieved by the split-radix FFT algorithm, which requires real multiplications and additions for n > 1. This was recently reduced to (Johnson and Frigo, 2007;[17] Lundy and Van Buskirk, 2007[31]). A slightly larger count (but still better than split radix for n ≥ 256) was shown to be provably optimal for n ≤ 512 under additional restrictions on the possible algorithms (split-radix-like flowgraphs with unit-modulus multiplicative factors), by reduction to a satisfiability modulo theories problem solvable by brute force (Haynal & Haynal, 2011).[32]

Most of the attempts to lower or prove the complexity of FFT algorithms have focused on the ordinary complex-data case, because it is the simplest. However, complex-data FFTs are so closely related to algorithms for related problems such as real-data FFTs, discrete cosine transforms, discrete Hartley transforms, and so on, that any improvement in one of these would immediately lead to improvements in the others (Duhamel & Vetterli, 1990).[33]

Approximations

[edit]

All of the FFT algorithms discussed above compute the DFT exactly (i.e., neglecting floating-point errors). A few FFT algorithms have been proposed, however, that compute the DFT approximately, with an error that can be made arbitrarily small at the expense of increased computations. Such algorithms trade the approximation error for increased speed or other properties. For example, an approximate FFT algorithm by Edelman et al. (1999)[34] achieves lower communication requirements for parallel computing with the help of a fast multipole method. A wavelet-based approximate FFT by Guo and Burrus (1996)[35] takes sparse inputs/outputs (time/frequency localization) into account more efficiently than is possible with an exact FFT. Another algorithm for approximate computation of a subset of the DFT outputs is due to Shentov et al. (1995).[36] The Edelman algorithm works equally well for sparse and non-sparse data, since it is based on the compressibility (rank deficiency) of the Fourier matrix itself rather than the compressibility (sparsity) of the data. Conversely, if the data are sparse—that is, if only k out of n Fourier coefficients are nonzero—then the complexity can be reduced to , and this has been demonstrated to lead to practical speedups compared to an ordinary FFT for n/k > 32 in a large-n example (n = 222) using a probabilistic approximate algorithm (which estimates the largest k coefficients to several decimal places).[37]

Accuracy

[edit]

FFT algorithms have errors when finite-precision floating-point arithmetic is used, but these errors are typically quite small; most FFT algorithms, e.g. Cooley–Tukey, have excellent numerical properties as a consequence of the pairwise summation structure of the algorithms. The upper bound on the relative error for the Cooley–Tukey algorithm is , compared to for the na?ve DFT formula,[19] where ?? is the machine floating-point relative precision. In fact, the root mean square (rms) errors are much better than these upper bounds, being only for Cooley–Tukey and for the na?ve DFT (Schatzman, 1996).[38] These results, however, are very sensitive to the accuracy of the twiddle factors used in the FFT (i.e. the trigonometric function values), and it is not unusual for incautious FFT implementations to have much worse accuracy, e.g. if they use inaccurate trigonometric recurrence formulas. Some FFTs other than Cooley–Tukey, such as the Rader–Brenner algorithm, are intrinsically less stable.

In fixed-point arithmetic, the finite-precision errors accumulated by FFT algorithms are worse, with rms errors growing as for the Cooley–Tukey algorithm (Welch, 1969).[39] Achieving this accuracy requires careful attention to scaling to minimize loss of precision, and fixed-point FFT algorithms involve rescaling at each intermediate stage of decompositions like Cooley–Tukey.

To verify the correctness of an FFT implementation, rigorous guarantees can be obtained in time by a simple procedure checking the linearity, impulse-response, and time-shift properties of the transform on random inputs (Ergün, 1995).[40]

The values for intermediate frequencies may be obtained by various averaging methods.

Multidimensional FFTs

[edit]

As defined in the multidimensional DFT article, the multidimensional DFT

transforms an array xn with a d-dimensional vector of indices by a set of d nested summations (over for each j), where the division is performed element-wise. Equivalently, it is the composition of a sequence of d sets of one-dimensional DFTs, performed along one dimension at a time (in any order).

This compositional viewpoint immediately provides the simplest and most common multidimensional DFT algorithm, known as the row-column algorithm (after the two-dimensional case, below). That is, one simply performs a sequence of d one-dimensional FFTs (by any of the above algorithms): first you transform along the n1 dimension, then along the n2 dimension, and so on (actually, any ordering works). This method is easily shown to have the usual complexity, where is the total number of data points transformed. In particular, there are n/n1 transforms of size n1, etc., so the complexity of the sequence of FFTs is:

In two dimensions, the xk can be viewed as an matrix, and this algorithm corresponds to first performing the FFT of all the rows (resp. columns), grouping the resulting transformed rows (resp. columns) together as another matrix, and then performing the FFT on each of the columns (resp. rows) of this second matrix, and similarly grouping the results into the final result matrix.

In more than two dimensions, it is often advantageous for cache locality to group the dimensions recursively. For example, a three-dimensional FFT might first perform two-dimensional FFTs of each planar slice for each fixed n1, and then perform the one-dimensional FFTs along the n1 direction. More generally, an asymptotically optimal cache-oblivious algorithm consists of recursively dividing the dimensions into two groups and that are transformed recursively (rounding if d is not even) (see Frigo and Johnson, 2005).[18] Still, this remains a straightforward variation of the row-column algorithm that ultimately requires only a one-dimensional FFT algorithm as the base case, and still has complexity. Yet another variation is to perform matrix transpositions in between transforming subsequent dimensions, so that the transforms operate on contiguous data; this is especially important for out-of-core and distributed memory situations where accessing non-contiguous data is extremely time-consuming.

There are other multidimensional FFT algorithms that are distinct from the row-column algorithm, although all of them have complexity. Perhaps the simplest non-row-column FFT is the vector-radix FFT algorithm, which is a generalization of the ordinary Cooley–Tukey algorithm where one divides the transform dimensions by a vector of radices at each step. (This may also have cache benefits.) The simplest case of vector-radix is where all of the radices are equal (e.g., vector-radix-2 divides all of the dimensions by two), but this is not necessary. Vector radix with only a single non-unit radix at a time, i.e. , is essentially a row-column algorithm. Other, more complicated, methods include polynomial transform algorithms due to Nussbaumer (1977),[41] which view the transform in terms of convolutions and polynomial products. See Duhamel and Vetterli (1990)[33] for more information and references.

Other generalizations

[edit]

An generalization to spherical harmonics on the sphere S2 with n2 nodes was described by Mohlenkamp,[42] along with an algorithm conjectured (but not proven) to have complexity; Mohlenkamp also provides an implementation in the libftsh library.[43] A spherical-harmonic algorithm with complexity is described by Rokhlin and Tygert.[44]

The fast folding algorithm is analogous to the FFT, except that it operates on a series of binned waveforms rather than a series of real or complex scalar values. Rotation (which in the FFT is multiplication by a complex phasor) is a circular shift of the component waveform.

Various groups have also published FFT algorithms for non-equispaced data, as reviewed in Potts et al. (2001).[45] Such algorithms do not strictly compute the DFT (which is only defined for equispaced data), but rather some approximation thereof (a non-uniform discrete Fourier transform, or NDFT, which itself is often computed only approximately). More generally, there are various other methods of spectral estimation.

Applications

[edit]

The FFT is used in digital recording, sampling, additive synthesis and pitch correction software.[46]

The FFT's importance derives from the fact that it has made working in the frequency domain equally computationally feasible as working in the temporal or spatial domain. Some of the important applications of the FFT include:[16][47]

An original application of the FFT in finance particularly in the Valuation of options was developed by Marcello Minenna.[49]

Alternatives

[edit]

The FFT can be a poor choice for analyzing signals with non-stationary frequency content—where the frequency characteristics change over time. DFTs provide a global frequency estimate, assuming that all frequency components are present throughout the entire signal, which makes it challenging to detect short-lived or transient features within signals.

For cases where frequency information appears briefly in the signal or generally varies over time, alternatives like the short-time Fourier transform, discrete wavelet transforms, or discrete Hilbert transform can be more suitable.[50][51] These transforms allow for localized frequency analysis by capturing both frequency and time-based information.

Research areas

[edit]
Big FFTs
With the explosion of big data in fields such as astronomy, the need for 512K FFTs has arisen for certain interferometry calculations. The data collected by projects such as WMAP and LIGO require FFTs of tens of billions of points. As this size does not fit into main memory, so-called out-of-core FFTs are an active area of research.[52]
Approximate FFTs
For applications such as MRI, it is necessary to compute DFTs for nonuniformly spaced grid points and/or frequencies. Multipole-based approaches can compute approximate quantities with factor of runtime increase.[53]
Group FFTs
The FFT may also be explained and interpreted using group representation theory, allowing for further generalization. A function on any compact group, including non-cyclic, has an expansion in terms of a basis of irreducible matrix elements. It remains an active area of research to find an efficient algorithm for performing this change of basis. Applications including efficient spherical harmonic expansion, analyzing certain Markov processes, robotics etc.[54]
Quantum FFTs
Shor's fast algorithm for integer factorization on a quantum computer has a subroutine to compute DFT of a binary vector. This is implemented as a sequence of 1- or 2-bit quantum gates now known as quantum FFT, which is effectively the Cooley–Tukey FFT realized as a particular factorization of the Fourier matrix. Extension to these ideas is currently being explored.[55]

Language reference

[edit]
LanguageCommand–methodPrerequisites
Rstats::fft(x)None
Scilabfft(x)None
MATLAB, Octavefft(x)None
Pythonfft.fft(x)numpy or scipy
MathematicaFourier[x]None
Fortranfftw_one(plan,in,out)FFTW
Juliafft(A [,dims])FFTW
Rustfft.process(&mut x);rustfft
Haskelldft xfft

See also

[edit]

FFT-related algorithms:

FFT implementations:

  • ALGLIB – a dual/GPL-licensed C++ and C# library (also supporting other languages), with real/complex FFT implementation
  • FFTPACK – another Fortran FFT library (public domain)
  • Architecture-specific:
  • Many more implementations are available,[57] for CPUs and GPUs, such as PocketFFT for C++

Other links:

References

[edit]
  1. ^ a b c d Heideman, Michael T.; Johnson, Don H.; Burrus, Charles Sidney (1984). "Gauss and the history of the fast Fourier transform" (PDF). IEEE ASSP Magazine. 1 (4): 14–21. CiteSeerX 10.1.1.309.181. doi:10.1109/MASSP.1984.1162257. S2CID 10032502. Archived (PDF) from the original on 2025-08-06.
  2. ^ Van Loan, Charles (1992). Computational Frameworks for the Fast Fourier Transform. SIAM.
  3. ^ Strang, Gilbert (May–June 1994). "Wavelets". American Scientist. 82 (3): 250–255. Bibcode:1994AmSci..82..250S. JSTOR 29775194.
  4. ^ Kent, Ray D.; Read, Charles (2002). Acoustic Analysis of Speech. Singular/Thomson Learning. ISBN 0-7693-0112-6.
  5. ^ Dongarra, Jack; Sullivan, Francis (January 2000). "Guest Editors' Introduction to the top 10 algorithms". Computing in Science & Engineering. 2 (1): 22–23. Bibcode:2000CSE.....2a..22D. doi:10.1109/MCISE.2000.814652. ISSN 1521-9615.
  6. ^ Gauss, Carl Friedrich (1866). "Theoria interpolationis methodo nova tractata" [Theory regarding a new method of interpolation]. Nachlass (Unpublished manuscript). Werke (in Latin and German). Vol. 3. G?ttingen, Germany: K?niglichen Gesellschaft der Wissenschaften zu G?ttingen. pp. 265–303.
  7. ^ a b Heideman, Michael T.; Johnson, Don H.; Burrus, Charles Sidney (2025-08-06). "Gauss and the history of the fast Fourier transform". Archive for History of Exact Sciences. 34 (3): 265–277. CiteSeerX 10.1.1.309.181. doi:10.1007/BF00348431. ISSN 0003-9519. S2CID 122847826.
  8. ^ Yates, Frank (1937). "The design and analysis of factorial experiments". Technical Communication No. 35 of the Commonwealth Bureau of Soils. 142 (3585): 90–92. Bibcode:1938Natur.142...90F. doi:10.1038/142090a0. S2CID 23501205.
  9. ^ Danielson, Gordon C.; Lanczos, Cornelius (1942). "Some improvements in practical Fourier analysis and their application to x-ray scattering from liquids". Journal of the Franklin Institute. 233 (4): 365–380. doi:10.1016/S0016-0032(42)90767-1.
  10. ^ Lanczos, Cornelius (1956). Applied Analysis. Prentice–Hall.
  11. ^ Cooley, James W.; Lewis, Peter A. W.; Welch, Peter D. (June 1967). "Historical notes on the fast Fourier transform". IEEE Transactions on Audio and Electroacoustics. 15 (2): 76–79. CiteSeerX 10.1.1.467.7209. doi:10.1109/TAU.1967.1161903. ISSN 0018-9278.
  12. ^ Good, I. J. (July 1958). "The Interaction Algorithm and Practical Fourier Analysis". Journal of the Royal Statistical Society, Series B (Methodological). 20 (2): 361–372. doi:10.1111/j.2517-6161.1958.tb00300.x.
  13. ^ a b Cooley, James W.; Tukey, John W. (1965). "An algorithm for the machine calculation of complex Fourier series". Mathematics of Computation. 19 (90): 297–301. doi:10.1090/S0025-5718-1965-0178586-1. ISSN 0025-5718.
  14. ^ Cooley, James W. (1987). "The Re-Discovery of the Fast Fourier Transform Algorithm" (PDF). Microchimica Acta. Vol. III. Vienna, Austria. pp. 33–45. Archived (PDF) from the original on 2025-08-06.{{cite book}}: CS1 maint: location missing publisher (link)
  15. ^ Garwin, Richard (June 1969). "The Fast Fourier Transform As an Example of the Difficulty in Gaining Wide Use for a New Technique" (PDF). IEEE Transactions on Audio and Electroacoustics. AU-17 (2): 68–72. Archived (PDF) from the original on 2025-08-06.
  16. ^ a b Rockmore, Daniel N. (January 2000). "The FFT: an algorithm the whole family can use". Computing in Science & Engineering. 2 (1): 60–64. Bibcode:2000CSE.....2a..60R. CiteSeerX 10.1.1.17.228. doi:10.1109/5992.814659. ISSN 1521-9615. S2CID 14978667.
  17. ^ a b Frigo, Matteo; Johnson, Steven G. (January 2007) [2025-08-06]. "A Modified Split-Radix FFT With Fewer Arithmetic Operations". IEEE Transactions on Signal Processing. 55 (1): 111–119. Bibcode:2007ITSP...55..111J. CiteSeerX 10.1.1.582.5497. doi:10.1109/tsp.2006.882087. S2CID 14772428.
  18. ^ a b c Frigo, Matteo; Johnson, Steven G. (2005). "The Design and Implementation of FFTW3" (PDF). Proceedings of the IEEE. 93 (2): 216–231. Bibcode:2005IEEEP..93..216F. CiteSeerX 10.1.1.66.3097. doi:10.1109/jproc.2004.840301. S2CID 6644892. Archived (PDF) from the original on 2025-08-06.
  19. ^ a b Gentleman, W. Morven; Sande, G. (1966). "Fast Fourier transforms—for fun and profit". Proceedings of the AFIPS. 29: 563–578. doi:10.1145/1464291.1464352. S2CID 207170956.
  20. ^ Gauss, Carl Friedrich (1866) [1805]. Theoria interpolationis methodo nova tractata. Werke (in Latin and German). Vol. 3. G?ttingen, Germany: K?nigliche Gesellschaft der Wissenschaften. pp. 265–327.
  21. ^ a b Brenner, Norman M.; Rader, Charles M. (1976). "A New Principle for Fast Fourier Transformation". IEEE Transactions on Acoustics, Speech, and Signal Processing. 24 (3): 264–266. doi:10.1109/TASSP.1976.1162805.
  22. ^ a b Winograd, Shmuel (1978). "On computing the discrete Fourier transform". Mathematics of Computation. 32 (141): 175–199. doi:10.1090/S0025-5718-1978-0468306-4. JSTOR 2006266. PMC 430186. PMID 16592303.
  23. ^ Winograd, Shmuel (1979). "On the multiplicative complexity of the discrete Fourier transform". Advances in Mathematics. 32 (2): 83–117. doi:10.1016/0001-8708(79)90037-9.
  24. ^ a b Sorensen, Henrik V.; Jones, Douglas L.; Heideman, Michael T.; Burrus, Charles Sidney (1987). "Real-valued fast Fourier transform algorithms". IEEE Transactions on Acoustics, Speech, and Signal Processing. 35 (6): 849–863. CiteSeerX 10.1.1.205.4523. doi:10.1109/TASSP.1987.1165220.
  25. ^ Sorensen, Henrik V.; Jones, Douglas L.; Heideman, Michael T.; Burrus, Charles Sidney (1987). "Corrections to "Real-valued fast Fourier transform algorithms"". IEEE Transactions on Acoustics, Speech, and Signal Processing. 35 (9): 1353. doi:10.1109/TASSP.1987.1165284.
  26. ^ Heideman, Michael T.; Burrus, Charles Sidney (1986). "On the number of multiplications necessary to compute a length-2n DFT". IEEE Transactions on Acoustics, Speech, and Signal Processing. 34 (1): 91–95. doi:10.1109/TASSP.1986.1164785.
  27. ^ a b Duhamel, Pierre (1990). "Algorithms meeting the lower bounds on the multiplicative complexity of length-2n DFTs and their connection with practical algorithms". IEEE Transactions on Acoustics, Speech, and Signal Processing. 38 (9): 1504–1511. doi:10.1109/29.60070.
  28. ^ Morgenstern, Jacques (1973). "Note on a lower bound of the linear complexity of the fast Fourier transform". Journal of the ACM. 20 (2): 305–306. doi:10.1145/321752.321761. S2CID 2790142.
  29. ^ Pan, Victor Ya. (2025-08-06). "The trade-off between the additive complexity and the asynchronicity of linear and bilinear algorithms". Information Processing Letters. 22 (1): 11–14. doi:10.1016/0020-0190(86)90035-9. Retrieved 2025-08-06.
  30. ^ Papadimitriou, Christos H. (1979). "Optimality of the fast Fourier transform". Journal of the ACM. 26 (1): 95–102. doi:10.1145/322108.322118. S2CID 850634.
  31. ^ Lundy, Thomas J.; Van Buskirk, James (2007). "A new matrix approach to real FFTs and convolutions of length 2k". Computing. 80 (1): 23–45. doi:10.1007/s00607-007-0222-6. S2CID 27296044.
  32. ^ Haynal, Steve; Haynal, Heidi (2011). "Generating and Searching Families of FFT Algorithms" (PDF). Journal on Satisfiability, Boolean Modeling and Computation. 7 (4): 145–187. arXiv:1103.5740. Bibcode:2011arXiv1103.5740H. doi:10.3233/SAT190084. S2CID 173109. Archived from the original (PDF) on 2025-08-06.
  33. ^ a b Duhamel, Pierre; Vetterli, Martin (1990). "Fast Fourier transforms: a tutorial review and a state of the art". Signal Processing. 19 (4): 259–299. Bibcode:1990SigPr..19..259D. doi:10.1016/0165-1684(90)90158-U.
  34. ^ Edelman, Alan; McCorquodale, Peter; Toledo, Sivan (1999). "The Future Fast Fourier Transform?" (PDF). SIAM Journal on Scientific Computing. 20 (3): 1094–1114. CiteSeerX 10.1.1.54.9339. doi:10.1137/S1064827597316266. Archived (PDF) from the original on 2025-08-06.
  35. ^ Guo, Haitao; Burrus, Charles Sidney (1996). "Fast approximate Fourier transform via wavelets transform". In Unser, Michael A.; Aldroubi, Akram; Laine, Andrew F. (eds.). Wavelet Applications in Signal and Image Processing IV. Proceedings of SPIE. Vol. 2825. pp. 250–259. Bibcode:1996SPIE.2825..250G. CiteSeerX 10.1.1.54.3984. doi:10.1117/12.255236. S2CID 120514955.
  36. ^ Shentov, Ognjan V.; Mitra, Sanjit K.; Heute, Ulrich; Hossen, Abdul N. (1995). "Subband DFT. I. Definition, interpretations and extensions". Signal Processing. 41 (3): 261–277. doi:10.1016/0165-1684(94)00103-7.
  37. ^ Hassanieh, Haitham; Indyk, Piotr; Katabi, Dina; Price, Eric (January 2012). "Simple and Practical Algorithm for Sparse Fourier Transform" (PDF). ACM-SIAM Symposium on Discrete Algorithms. Archived (PDF) from the original on 2025-08-06. (NB. See also the sFFT Web Page.)
  38. ^ Schatzman, James C. (1996). "Accuracy of the discrete Fourier transform and the fast Fourier transform". SIAM Journal on Scientific Computing. 17 (5): 1150–1166. Bibcode:1996SJSC...17.1150S. CiteSeerX 10.1.1.495.9184. doi:10.1137/s1064827593247023.
  39. ^ Welch, Peter D. (1969). "A fixed-point fast Fourier transform error analysis". IEEE Transactions on Audio and Electroacoustics. 17 (2): 151–157. doi:10.1109/TAU.1969.1162035.
  40. ^ Ergün, Funda (1995). "Testing multivariate linear functions". Proceedings of the twenty-seventh annual ACM symposium on Theory of computing - STOC '95. Kyoto, Japan. pp. 407–416. doi:10.1145/225058.225167. ISBN 978-0897917186. S2CID 15512806.{{cite book}}: CS1 maint: location missing publisher (link)
  41. ^ Nussbaumer, Henri J. (1977). "Digital filtering using polynomial transforms". Electronics Letters. 13 (13): 386–387. Bibcode:1977ElL....13..386N. doi:10.1049/el:19770280.
  42. ^ Mohlenkamp, Martin J. (1999). "A Fast Transform for Spherical Harmonics" (PDF). Journal of Fourier Analysis and Applications. 5 (2–3): 159–184. Bibcode:1999JFAA....5..159M. CiteSeerX 10.1.1.135.9830. doi:10.1007/BF01261607. S2CID 119482349. Archived (PDF) from the original on 2025-08-06. Retrieved 2025-08-06.
  43. ^ "libftsh library". Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  44. ^ Rokhlin, Vladimir; Tygert, Mark (2006). "Fast Algorithms for Spherical Harmonic Expansions" (PDF). SIAM Journal on Scientific Computing. 27 (6): 1903–1928. Bibcode:2006SJSC...27.1903R. CiteSeerX 10.1.1.125.7415. doi:10.1137/050623073. Archived (PDF) from the original on 2025-08-06. Retrieved 2025-08-06. [1]
  45. ^ Potts, Daniel; Steidl, Gabriele; Tasche, Manfred (2001). "Fast Fourier transforms for nonequispaced data: A tutorial" (PDF). In Benedetto, J. J.; Ferreira, P. (eds.). Modern Sampling Theory: Mathematics and Applications. Birkh?user. Archived (PDF) from the original on 2025-08-06.
  46. ^ Burgess, Richard James (2014). The History of Music Production. Oxford University Press. ISBN 978-0199357178. Retrieved 1 August 2019.
  47. ^ Chu, Eleanor; George, Alan (2025-08-06) [2025-08-06]. "Chapter 16". Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. CRC Press. pp. 153–168. ISBN 978-1-42004996-1.
  48. ^ Fernandez-de-Cossio Diaz, Jorge; Fernandez-de-Cossio, Jorge (2025-08-06). "Computation of Isotopic Peak Center-Mass Distribution by Fourier Transform". Analytical Chemistry. 84 (16): 7052–7056. doi:10.1021/ac301296a. ISSN 0003-2700. PMID 22873736.
  49. ^ Minenna, Marcello (October 2008). "A revisited and stable Fourier transform method for affine jump diffusion models". Journal of Banking and Finance. 32 (10): 2064–2075. doi:10.1016/j.jbankfin.2007.05.019.
  50. ^ Kijewski-Correa, T.; Kareem, A. (October 2006). "Efficacy of Hilbert and Wavelet Transforms for Time-Frequency Analysis". Journal of Engineering Mechanics. 132 (10): 1037–1049. doi:10.1061/(ASCE)0733-9399(2006)132:10(1037). ISSN 0733-9399.
  51. ^ Stern, Richard M. (2020). "Notes on short-time Fourier transforms" (PDF). Archived (PDF) from the original on 2025-08-06. Retrieved 2025-08-06.
  52. ^ Cormen, Thomas H.; Nicol, David M. (1998). "Performing out-of-core FFTs on parallel disk systems". Parallel Computing. 24 (1): 5–20. CiteSeerX 10.1.1.44.8212. doi:10.1016/S0167-8191(97)00114-2. S2CID 14996854.
  53. ^ Dutt, Alok; Rokhlin, Vladimir (2025-08-06). "Fast Fourier Transforms for Nonequispaced Data". SIAM Journal on Scientific Computing. 14 (6): 1368–1393. Bibcode:1993SJSC...14.1368D. doi:10.1137/0914081. ISSN 1064-8275.
  54. ^ Rockmore, Daniel N. (2004). "Recent Progress and Applications in Group FFTs". In Byrnes, Jim (ed.). Computational Noncommutative Algebra and Applications. NATO Science Series II: Mathematics, Physics and Chemistry. Vol. 136. Springer Netherlands. pp. 227–254. CiteSeerX 10.1.1.324.4700. doi:10.1007/1-4020-2307-3_9. ISBN 978-1-4020-1982-1. S2CID 1412268.
  55. ^ Ryo, Asaka; Kazumitsu, Sakai; Ryoko, Yahagi (2020). "Quantum circuit for the fast Fourier transform". Quantum Information Processing. 19 (277): 277. arXiv:1911.03055. Bibcode:2020QuIP...19..277A. doi:10.1007/s11128-020-02776-5. S2CID 207847474.
  56. ^ "Arm Performance Libraries". Arm. 2020. Retrieved 2025-08-06.
  57. ^ "Complete list of C/C++ FFT libraries". VCV Community. 2025-08-06. Retrieved 2025-08-06.

Further reading

[edit]
[edit]
论是什么意思 拈花一笑什么意思 冬占生男是什么意思 什么的形象 什么牌子的风扇好
烧伤的疤痕怎么去除用什么法最好 亚麻是什么面料 梦见入室抢劫意味什么 女龙配什么属相最好 打呼噜是什么病
夫妇是什么意思 为什么指甲会凹凸不平 理发师代表什么生肖 汤伤用什么药 skg是什么品牌
口疮反复发作什么原因 肝肾阴虚吃什么药 姐姐的婆婆叫什么 米干是什么 八月十五是什么日子
羟基是什么hcv9jop7ns9r.cn 小孩吐奶是什么原因hcv8jop5ns8r.cn 15年婚姻是什么婚hcv9jop3ns6r.cn 双侧中耳乳突炎是什么意思hcv9jop3ns6r.cn 天公作美是什么生肖hcv8jop2ns7r.cn
低钾血症是什么意思hcv8jop4ns9r.cn 东方蝾螈吃什么hcv7jop4ns7r.cn 人流后什么时候来月经hcv8jop6ns2r.cn 运动后恶心想吐是什么原因hkuteam.com 处女座跟什么星座最配hcv7jop5ns3r.cn
梦见自己洗头发是什么意思helloaicloud.com 十一月二十九是什么星座hcv7jop9ns7r.cn 人间炼狱是什么意思hcv8jop2ns1r.cn 芙蓉花长什么样hcv8jop8ns9r.cn 房性早搏是什么意思luyiluode.com
心慌是什么病hcv8jop2ns4r.cn 西洋参吃了有什么好处hcv9jop1ns2r.cn 什么是植物蛋白cl108k.com 软糯什么意思hcv9jop2ns8r.cn 流鼻涕咳嗽吃什么药sanhestory.com
百度