送礼送什么烟比较好| 天麻起什么作用| 高烧不退有什么好办法| 羊驼为什么吐口水| 身份证前六位代表什么| 睡着了流口水是什么原因| 淀粉酶高有什么危害| 玉兰花什么季节开| 银镯子变黑是什么原因| 独善其身是什么意思啊| 甘薯是什么东西| 秦始皇原名叫什么| 长辈生日送什么好| 陈醋和白醋有什么区别| 韭菜什么时候种| 常喝黑苦荞茶有什么好处| 川崎病是什么病| 易经和周易有什么区别| 狗吃什么药会立马就死| 女人八卦是什么意思| 兔肉和什么相克| 吃什么降血压的食物| 双氧奶是什么| 惜字如金是什么意思| 放是什么偏旁| mon什么意思| 健康查体是什么意思| 58什么意思| 农历七月初五是什么星座| 招蚊子咬是什么原因| 急性肠胃炎可以吃什么食物| 芹菜煮水喝有什么功效| 端午节是什么星座| 父母宫代表什么| 电压高是什么原因造成| 痔疮是什么样子的| 鸦片鱼又叫什么鱼| 肺腺瘤是什么| 乙亥五行属什么| 孝喘吃什么药好| 腹泻可以吃什么| 俄罗斯特工组织叫什么| 长期失眠吃什么食物好| 乙酰胆碱的作用是什么| 钻牛角尖什么意思| 晚上吃黄瓜有什么好处| 芪明颗粒主治什么病| 做奶茶用什么茶叶| 王羲之的儿子叫什么名字| 12月15日是什么星座| 继发性高血压什么意思| 搓是什么意思| 宁夏有什么特产| 为什么姨妈会推迟| 吃红萝卜有什么好处| 梦见自己大笑是什么意思| 与虎谋皮是什么生肖| 贝前列素钠片主治什么病| 无花果有什么功效| inr是什么意思医学| 盛产是什么意思| 膝关节痛挂什么科| 22是什么意思| 梦见被狗咬是什么意思| 太后是皇上的什么人| 吃什么补血快| 什么叫留守儿童| 冠心病做什么检查| 艾草泡脚有什么功效| 然五行属性是什么| 牛奶丝是什么面料| 梅花三弄的三弄指什么| 玑是什么意思| 无是什么意思| 左手麻木什么原因| 端午是什么时候| 刚产下的蚕卵是什么颜色| 有什么好听的网名| 为什么睡觉会打呼| 蜘蛛痣是什么原因引起的| 打鼾是什么原因引起的| 杀虫剂中毒有什么症状| 梦到猫是什么意思| 吃你鲍鱼是什么意思| 备孕吃什么好| 肠易激综合征是什么原因造成的| 老虎油是什么意思| 蜱虫的天敌是什么| 血管堵塞吃什么药好| 为什么尿会很黄| 乳腺钼靶是什么意思| 考研复试是什么意思| 男人嘴小代表什么意思| 佝偻病是什么样子图片| 女性脱发严重是什么原因引起的| 什么叫戒断反应| 番石榴是什么| 100年前是什么朝代| 腿抽筋是什么原因引起的| 免疫力下降吃什么好| 生育酚是什么| 张家界地貌属于什么地貌| 什么的风雨| 眼睛视力模糊是什么原因| 血型o型rh阳性是什么意思| 橙花是什么花| 接驳是什么意思| 玫瑰糠疹是什么原因引起的| 果代表什么生肖| 娃娃鱼吃什么食物| 灵魂是什么| 红酒兑什么好喝| 指甲紫色是什么病的征兆| 养肝护肝喝什么茶最好| 什么生肖不能养龟| 疮疖是什么样子图片| 三天不打上房揭瓦的下一句是什么| 怀孕可以喝什么饮料| 真菌性外耳道炎用什么药| 小肚子左边疼是什么原因| 喝酒脸红是什么原因造成的| 假性宫缩是什么感觉| 安踏是什么品牌| 山莨菪碱为什么叫6542| 痛风不能吃什么食物表| 尿酸高要吃什么药| 脂肪瘤是什么引起的| 淡然自若的意思是什么| 免贵姓是什么意思| 为什么用英语怎么说| 粗糙的什么| 为道日损什么意思| 颈椎病挂号挂什么科| 为什么拉黑色的屎| 混油皮是什么特征| 脑供血不足用什么药效果最好| 犀利哥什么意思| rm是什么币| 微信限额是什么意思| 下馆子什么意思| 8月18日什么星座| 不将就什么意思| 棕色眼睛的人什么血统| iq是什么意思| 陨石有什么作用和功效| 尿道口灼热感吃什么药最快| 油条吃多了有什么危害| 眼睛肿疼是什么原因引起的| 为什么想吐| 小孩说话晚是什么原因| ems是什么意思| 人死后会变成什么| 就请你给我多一点点时间是什么歌| 看膝盖挂什么科| 怀孕初期吃什么菜| 幼儿牙齿黑是什么原因| 肾小球是什么| 有所作为的意思是什么| 吃什么对眼睛好| 小肚子疼是什么原因| dazzle是什么牌子| 结节影是什么意思| 喝可乐有什么好处| 家里起火代表什么预兆| 身无什么| 性功能下降是什么原因| who是什么意思| 高血压会引起什么病症| 父亲节出什么生肖| 6月6日是什么节| 脊柱侧弯是什么原因引起的| 腿胖是什么原因引起的| 最近有什么病毒感染| 腱鞘炎有什么治疗方法| 什么的哭| 财运亨通是什么意思| 八府巡按是什么官| 副乡长是什么级别| 六月十六什么星座| 小拇指有痣代表什么| 着重号是什么符号| 柔软对什么| 女性肛门坠胀看什么科| 什么方法减肥最快| 部分空蝶鞍是什么意思| 诱导是什么意思| naco是什么牌子| 本是同根生相煎何太急是什么意思| 眼皮重是什么原因| 嫂嫂是什么意思| 睡觉被口水呛醒是什么原因| yp是什么意思| 尿道感染是什么原因引起的| dbp是什么意思| 孕早期吃什么水果好| 32属什么生肖| 酸菜鱼一般加什么配菜| 经常流鼻涕是什么原因引起的| 眼睛疲劳干涩用什么眼药水| 烟雾病是什么| 腿疼是什么原因引起的| 灌顶是什么意思| 高温中暑吃什么药| 武夷肉桂茶属于什么茶| 18年是什么年| 血红蛋白偏低什么意思| 两点一线是什么意思| 柠檬加蜂蜜泡水喝有什么功效| 为什么最迷人的最危险是什么歌| 152是什么意思| 痛风可以吃什么水果| 什么是免疫力| 一什么教室| 数字5代表什么意思| 丞五行属什么| 六味地黄丸什么人不能吃| 办理护照需要什么材料| saucony是什么牌子| 医院院长是什么级别| 青砖茶属于什么茶| 为什么玉镯不能戴左手| 结婚6年是什么婚| 什么东西驱蛇效果最好| 风疹病毒是什么病| 太阳穴痛什么原因| pose什么意思| 姝字五行属什么的| 闫和阎有什么区别| 理疗师是做什么的| 什么而不舍| 碘吃多了有什么危害| 热鸡蛋滚脸有什么作用| 黑苦荞茶有什么功效| 什么油最好| 贫嘴是什么意思| 下午三点多是什么时辰| 苏轼的弟弟叫什么| 草莓什么季节种植| 什么茶降血压| 肚子突然变大是什么原因| 糖尿病人可以吃什么零食| 晶莹的近义词是什么| 眼睛变红了是什么原因| 本自具足是什么意思| 阴阳是什么意思| 阻生智齿是什么意思| 不以规矩下一句是什么| 去医院检查是否怀孕挂什么科| 间质性改变是什么意思| 春雨绵绵是什么生肖| 土化是什么字| 左附件囊肿注意什么| 身怀六甲是什么意思| 祈福什么意思| 妈宝男是什么意思| 跛行是什么意思| 金刚菩提是什么植物的种子| 八月十三什么星座| 艾滋病有什么特征| 肾结石可以吃什么| 结婚前一天晚上的宴会叫什么| 检查肠胃做什么检查| 测怀孕什么时候最准| 无名指麻木是什么原因| 百度Jump to content

陕西高速集团西宝分公司三桥管理所党支部品牌建

From Wikipedia, the free encyclopedia
NumPy
Original author(s)Travis Oliphant
Developer(s)Community project
Initial releaseAs Numeric, 1995 (1995); as NumPy, 2006 (2006)
Stable release
2.3.1[1] / 21 June 2025; 37 days ago (21 June 2025)
Repository
Written inPython, C
Operating systemCross-platform
TypeNumerical analysis
LicenseBSD[2]
Websitenumpy.org Edit this on Wikidata
百度 新时期统战工作实践也需要统战理论给以科学指导,因此加强统一战线科学问题的研究被重新提上议事日程。

NumPy (pronounced /?n?mpa?/ NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.[3] The predecessor of NumPy, Numeric, was originally created by Jim Hugunin with contributions from several other developers. In 2005, Travis Oliphant created NumPy by incorporating features of the competing Numarray into Numeric, with extensive modifications. NumPy is open-source software and has many contributors. NumPy is fiscally sponsored by NumFOCUS.[4]

History

[edit]

matrix-sig

[edit]

The Python programming language was not originally designed for numerical computing, but attracted the attention of the scientific and engineering community early on. In 1995 the special interest group (SIG) matrix-sig was founded with the aim of defining an array computing package; among its members was Python designer and maintainer Guido van Rossum, who extended Python's syntax (in particular the indexing syntax[5]) to make array computing easier.[6]

Numeric

[edit]

An implementation of a matrix package was completed by Jim Fulton, then generalized[further explanation needed] by Jim Hugunin and called Numeric[6] (also variously known as the "Numerical Python extensions" or "NumPy"), with influences from the APL family of languages, Basis, MATLAB, FORTRAN, S and S+, and others.[7][8] Hugunin, a graduate student at the Massachusetts Institute of Technology (MIT),[8]:?10? joined the Corporation for National Research Initiatives (CNRI) in 1997 to work on JPython,[6] leaving Paul Dubois of Lawrence Livermore National Laboratory (LLNL) to take over as maintainer.[8]:?10? Other early contributors include David Ascher, Konrad Hinsen and Travis Oliphant.[8]:?10?

Numarray

[edit]

A new package called Numarray was written as a more flexible replacement for Numeric.[9] Like Numeric, it too is now deprecated.[10][11] Numarray had faster operations for large arrays, but was slower than Numeric on small ones,[12] so for a time both packages were used in parallel for different use cases. The last version of Numeric (v24.2) was released on 11 November 2005, while the last version of numarray (v1.5.2) was released on 24 August 2006.[13]

There was a desire to get Numeric into the Python standard library, but Guido van Rossum decided that the code was not maintainable in its state then.[when?][14]

NumPy

[edit]

In early 2005, NumPy developer Travis Oliphant wanted to unify the community around a single array package and ported Numarray's features to Numeric, releasing the result as NumPy 1.0 in 2006.[9] This new project was part of SciPy. To avoid installing the large SciPy package just to get an array object, this new package was separated and called NumPy. Support for Python 3 was added in 2011 with NumPy version 1.5.0.[15]

In 2011, PyPy started development on an implementation of the NumPy API for PyPy.[16] As of 2023, it is not yet fully compatible with NumPy.[17]

Features

[edit]

NumPy targets the CPython reference implementation of Python, which is a non-optimizing bytecode interpreter. Mathematical algorithms written for this version of Python often run much slower than compiled equivalents due to the absence of compiler optimization. NumPy addresses the slowness problem partly by providing multidimensional arrays and functions and operators that operate efficiently on arrays; using these requires rewriting some code, mostly inner loops, using NumPy.

Using NumPy in Python gives functionality comparable to MATLAB since they are both interpreted,[18] and they both allow the user to write fast programs as long as most operations work on arrays or matrices instead of scalars. In comparison, MATLAB boasts a large number of additional toolboxes, notably Simulink, whereas NumPy is intrinsically integrated with Python, a more modern and complete programming language. Moreover, complementary Python packages are available; SciPy is a library that adds more MATLAB-like functionality and Matplotlib is a plotting package that provides MATLAB-like plotting functionality. Although matlab can perform sparse matrix operations, numpy alone cannot perform such operations and requires the use of the scipy.sparse library. Internally, both MATLAB and NumPy rely on BLAS and LAPACK for efficient linear algebra computations.

Python bindings of the widely used computer vision library OpenCV utilize NumPy arrays to store and operate on data. Since images with multiple channels are simply represented as three-dimensional arrays, indexing, slicing or masking with other arrays are very efficient ways to access specific pixels of an image. The NumPy array as universal data structure in OpenCV for images, extracted feature points, filter kernels and many more vastly simplifies the programming workflow and debugging.[citation needed]

Importantly, many NumPy operations release the global interpreter lock, which allows for multithreaded processing.[19]

NumPy also provides a C API, which allows Python code to interoperate with external libraries written in low-level languages.[20]

The ndarray data structure

[edit]

The core functionality of NumPy is its "ndarray", for n-dimensional array, data structure. These arrays are strided views on memory.[9] In contrast to Python's built-in list data structure, these arrays are homogeneously typed: all elements of a single array must be of the same type.

Such arrays can also be views into memory buffers allocated by C/C++, Python, and Fortran extensions to the CPython interpreter without the need to copy data around, giving a degree of compatibility with existing numerical libraries. This functionality is exploited by the SciPy package, which wraps a number of such libraries (notably BLAS and LAPACK). NumPy has built-in support for memory-mapped ndarrays.[9]

Limitations

[edit]

Inserting or appending entries to an array is not as trivially possible as it is with Python's lists. The np.pad(...) routine to extend arrays actually creates new arrays of the desired shape and padding values, copies the given array into the new one and returns it. NumPy's np.concatenate([a1,a2]) operation does not actually link the two arrays but returns a new one, filled with the entries from both given arrays in sequence. Reshaping the dimensionality of an array with np.reshape(...) is only possible as long as the number of elements in the array does not change. These circumstances originate from the fact that NumPy's arrays must be views on contiguous memory buffers.

Algorithms that are not expressible as a vectorized operation will typically run slowly because they must be implemented in "pure Python", while vectorization may increase memory complexity of some operations from constant to linear, because temporary arrays must be created that are as large as the inputs. Runtime compilation of numerical code has been implemented by several groups to avoid these problems; open source solutions that interoperate with NumPy include numexpr[21] and Numba.[22] Cython and Pythran are static-compiling alternatives to these.

Many modern large-scale scientific computing applications have requirements that exceed the capabilities of the NumPy arrays. For example, NumPy arrays are usually loaded into a computer's memory, which might have insufficient capacity for the analysis of large datasets. Further, NumPy operations are executed on a single CPU. However, many linear algebra operations can be accelerated by executing them on clusters of CPUs or of specialized hardware, such as GPUs and TPUs, which many deep learning applications rely on. As a result, several alternative array implementations have arisen in the scientific python ecosystem over the recent years, such as Dask for distributed arrays and TensorFlow or JAX[23] for computations on GPUs. Because of its popularity, these often implement a subset of NumPy's API or mimic it, so that users can change their array implementation with minimal changes to their code required.[3] A library named CuPy,[24] accelerated by Nvidia's CUDA framework, has also shown potential for faster computing, being a 'drop-in replacement' of NumPy.[25]

Examples

[edit]
import numpy as np
from numpy.random import rand
from numpy.linalg import solve, inv
a = np.array([[1, 2, 3, 4], [3, 4, 6, 7], [5, 9, 0, 5]])
a.transpose()

Basic operations

[edit]
>>> a = np.array([1, 2, 3, 6])
>>> b = np.linspace(0, 2, 4)  # create an array with four equally spaced points starting with 0 and ending with 2.
>>> c = a - b
>>> c
array([ 1.        ,  1.33333333,  1.66666667,  4.        ])
>>> a**2
array([ 1,  4,  9, 36])

Universal functions

[edit]
>>> a = np.linspace(-np.pi, np.pi, 100) 
>>> b = np.sin(a)
>>> c = np.cos(a)
>>>
>>> # Functions can take both numbers and arrays as parameters.
>>> np.sin(1)
0.8414709848078965
>>> np.sin(np.array([1, 2, 3]))
array([0.84147098, 0.90929743, 0.14112001])

Linear algebra

[edit]
>>> from numpy.random import rand
>>> from numpy.linalg import solve, inv
>>> a = np.array([[1, 2, 3], [3, 4, 6.7], [5, 9.0, 5]])
>>> a.transpose()
array([[ 1. ,  3. ,  5. ],
       [ 2. ,  4. ,  9. ],
       [ 3. ,  6.7,  5. ]])
>>> inv(a)
array([[-2.27683616,  0.96045198,  0.07909605],
       [ 1.04519774, -0.56497175,  0.1299435 ],
       [ 0.39548023,  0.05649718, -0.11299435]])
>>> b =  np.array([3, 2, 1])
>>> solve(a, b)  # solve the equation ax = b
array([-4.83050847,  2.13559322,  1.18644068])
>>> c = rand(3, 3) * 20  # create a 3x3 random matrix of values within [0,1] scaled by 20
>>> c
array([[  3.98732789,   2.47702609,   4.71167924],
       [  9.24410671,   5.5240412 ,  10.6468792 ],
       [ 10.38136661,   8.44968437,  15.17639591]])
>>> np.dot(a, c)  # matrix multiplication
array([[  53.61964114,   38.8741616 ,   71.53462537],
       [ 118.4935668 ,   86.14012835,  158.40440712],
       [ 155.04043289,  104.3499231 ,  195.26228855]])
>>> a @ c # Starting with Python 3.5 and NumPy 1.10
array([[  53.61964114,   38.8741616 ,   71.53462537],
       [ 118.4935668 ,   86.14012835,  158.40440712],
       [ 155.04043289,  104.3499231 ,  195.26228855]])

Multidimensional arrays

[edit]
>>> M = np.zeros(shape=(2, 3, 5, 7, 11))
>>> T = np.transpose(M, (4, 2, 1, 3, 0))
>>> T.shape
(11, 5, 3, 7, 2)

Incorporation with OpenCV

[edit]
>>> import numpy as np
>>> import cv2
>>> r = np.reshape(np.arange(256*256)%256,(256,256))  # 256x256 pixel array with a horizontal gradient from 0 to 255 for the red color channel
>>> g = np.zeros_like(r)  # array of same size and type as r but filled with 0s for the green color channel
>>> b = r.T  # transposed r will give a vertical gradient for the blue color channel
>>> cv2.imwrite("gradients.png", np.dstack([b,g,r]))  # OpenCV images are interpreted as BGR, the depth-stacked array will be written to an 8bit RGB PNG-file called "gradients.png"
True
[edit]

Functional Python and vectorized NumPy version.

>>> # # # Functional Python # # #
>>> points = [[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]]
>>> qPoint = [4,5,3]
>>> edistance = lambda a,b: sum((a1-b1)**2 for a1,b1 in zip(a,b))**0.5 # Lambda function for calculating the Euclidean distance of two vectors
>>> nearest = min((edistance(i,qpoint),i) for i in points)[1]# Compute all Euclidean distances at once and return the nearest point
>>> print("Nearest point to q: ",nearest)
Nearest point to q: [3, 4, 4]

>>> # # # Equivalent NumPy vectorization # # #
>>> import numpy as np
>>> points = np.array([[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]])
>>> qPoint = np.array([4,5,3])
>>> minIdx = np.argmin(np.linalg.norm(points-qPoint, axis=1))  # compute all euclidean distances at once and return the index of the smallest one
>>> print(f"Nearest point to q: {points[minIdx]}")
Nearest point to q: [3 4 4]

F2PY

[edit]

Quickly wrap native code for faster scripts.[26][27][28]

! Python Fortran native code call example
! f2py -c -m foo *.f90
! Compile Fortran into python named module using intent statements
! Fortran subroutines only not functions--easier than JNI with C wrapper
! requires gfortran and make
subroutine ftest(a, b, n, c, d)
  implicit none
  integer, intent(in)  :: a, b, n
  integer, intent(out) :: c, d
  integer :: i
  c = 0
  do i = 1, n
    c = a + b + c
  end do
  d = (c * n) * (-1)
end subroutine ftest
>>> import numpy as np
>>> import foo
>>> a = foo.ftest(1, 2, 3)  # or c,d = instead of a.c and a.d
>>> print(a)
(9,-27)
>>> help("foo.ftest")  # foo.ftest.__doc__

See also

[edit]

References

[edit]
  1. ^ "Release 2.3.1". 21 June 2025. Retrieved 15 July 2025.
  2. ^ "NumPy — NumPy". numpy.org. NumPy developers.
  3. ^ a b Charles R Harris; K. Jarrod Millman; Stéfan J. van der Walt; et al. (16 September 2020). "Array programming with NumPy" (PDF). Nature. 585 (7825): 357–362. arXiv:2006.10256. doi:10.1038/S41586-020-2649-2. ISSN 1476-4687. PMC 7759461. PMID 32939066. Wikidata Q99413970.
  4. ^ "NumFOCUS Sponsored Projects". NumFOCUS. Retrieved 2025-08-05.
  5. ^ "Indexing — NumPy v1.20 Manual". numpy.org. Retrieved 2025-08-05.
  6. ^ a b c Millman, K. Jarrod; Aivazis, Michael (2011). "Python for Scientists and Engineers". Computing in Science and Engineering. 13 (2): 9–12. Bibcode:2011CSE....13b...9M. doi:10.1109/MCSE.2011.36. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  7. ^ Travis Oliphant (2007). "Python for Scientific Computing" (PDF). Computing in Science and Engineering. Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05.
  8. ^ a b c d David Ascher; Paul F. Dubois; Konrad Hinsen; Jim Hugunin; Travis Oliphant (1999). "Numerical Python" (PDF).
  9. ^ a b c d van der Walt, Stéfan; Colbert, S. Chris; Varoquaux, Ga?l (2011). "The NumPy array: a structure for efficient numerical computation". Computing in Science and Engineering. 13 (2). IEEE: 22. arXiv:1102.1523. Bibcode:2011CSE....13b..22V. doi:10.1109/MCSE.2011.37. S2CID 16907816.
  10. ^ "Numarray Homepage". Retrieved 2025-08-05.
  11. ^ Travis E. Oliphant (7 December 2006). Guide to NumPy. Retrieved 2 February 2017.
  12. ^ Travis Oliphant and other SciPy developers. "[Numpy-discussion] Status of Numeric". Retrieved 2 February 2017.
  13. ^ "NumPy Sourceforge Files". Retrieved 2025-08-05.
  14. ^ "History_of_SciPy - SciPy wiki dump". scipy.github.io.
  15. ^ "NumPy 1.5.0 Release Notes". Retrieved 2025-08-05.
  16. ^ "PyPy Status Blog: NumPy funding and status update". Retrieved 2025-08-05.
  17. ^ "NumPyPy Status". Retrieved 2025-08-05.
  18. ^ The SciPy Community. "NumPy for Matlab users". Retrieved 2 February 2017.
  19. ^ "numpy release notes".
  20. ^ McKinney, Wes (2014). "NumPy Basics: Arrays and Vectorized Computation". Python for Data Analysis (First Edition, Third release ed.). O'Reilly. p. 79. ISBN 978-1-449-31979-3.
  21. ^ Francesc Alted. "numexpr". GitHub. Retrieved 8 March 2014.
  22. ^ "Numba". Retrieved 8 March 2014.
  23. ^ Documentation? jax.readthedocs.io
  24. ^ Shohei Hido - CuPy: A NumPy-compatible Library for GPU - PyCon 2018, archived from the original on 2025-08-05, retrieved 2025-08-05
  25. ^ Entschev, Peter Andreas (2025-08-05). "Single-GPU CuPy Speedups". Medium. Retrieved 2025-08-05.
  26. ^ "F2PY docs from NumPy". NumPy. Retrieved 18 April 2022.
  27. ^ Worthey, Guy (3 January 2022). "A python vs. Fortran smackdown". Guy Worthey. Guy Worthey. Retrieved 18 April 2022.
  28. ^ Shell, Scott. "Writing fast Fortran routines for Python" (PDF). UCSB Engineering Department. University of California, Santa Barbara. Retrieved 18 April 2022.

Further reading

[edit]
[edit]
手术后吃什么营养品好 声音有磁性是什么意思 什么衣服 嘴无味是什么病的征兆 吃什么化痰
孕妇用什么驱蚊最安全 专家是什么意思 狗被蜱虫咬了有什么症状 前列腺炎中医叫什么病 三是什么意思
badus是什么牌子的手表 睡眠不好吃什么药 乙肝表面抗体定量偏高什么意思 小孩小腿疼是什么原因引起的 一毛三是什么军衔
耳轮有痣代表什么 印度神油是什么东西 攒肚是什么意思 猫有什么特点 甘油三酯高吃什么
为道日损什么意思hcv8jop6ns4r.cn 亚硝酸盐是什么hcv8jop0ns1r.cn 眼睛不好吃什么补眼睛hcv9jop4ns9r.cn model是什么意思jinxinzhichuang.com 肝胆胰腺属于什么科hcv7jop6ns6r.cn
婴儿喝什么奶粉最好hcv7jop5ns3r.cn 肺有小结节要注意什么hanqikai.com 鸡枞菌长在什么地方hcv9jop2ns3r.cn 凉粉什么做的hcv7jop6ns4r.cn sap是做什么的hcv7jop9ns6r.cn
吃什么药可以死xinmaowt.com 河童是什么hcv8jop5ns8r.cn 血小板是什么颜色的hcv9jop1ns2r.cn 蜈蚣最怕什么东西hcv8jop0ns2r.cn y什么意思zsyouku.com
流产吃什么药可以堕胎hcv8jop4ns4r.cn 流鼻血吃什么药效果好hcv8jop3ns1r.cn 天人合一是什么意思weuuu.com 颐养天年是什么意思hcv9jop3ns4r.cn 尿道炎是什么症状hcv9jop6ns4r.cn
百度