什么是天丝面料| 验血糖挂什么科| 乙肝小二阳是什么意思| 缺维生素D吃什么补得最快| cbt是什么意思| 丑时是什么时候| 劓刑是什么意思| 蛋白质偏高是什么原因| 降压药什么时间吃最好| 马口鱼是什么鱼| 怀孕肚子上长毛是什么原因| 瞒天过海是什么意思| 梦见买面条有什么预兆| 舒张压偏高是什么原因造成的| 分泌物多是什么原因| 章鱼吃什么食物| 什么名字好听| 打呼噜去医院挂什么科| 女人为什么要嫁人| 什么可当| 得意门生是什么意思| 其多列是什么意思| 下颚长痘痘是什么原因| 喉咙痛吃什么药效果好| 动情是什么意思| 脂肪瘤长什么样| 窜稀是什么意思| 挖空细胞是什么意思啊| 左肺下叶纤维灶是什么意思| 狗狗吐是什么原因| 嬲是什么意思| 肚脐上面疼是什么原因| 活动无耐力与什么有关| 新生儿五行缺什么查询| 卵巢囊性结构是什么意思| 情绪高涨是什么意思| 夏天什么时候结束| 儿童咳嗽吃什么消炎药| 属马的和什么属相最配| 伤口流水是什么原因| 白色玉米是什么玉米| 不悔梦归处只恨太匆匆是什么意思| 挪揄是什么意思| 右眼流泪是什么原因| 前夫是什么意思| 教师节是什么时候| 复方氨酚苯海拉明片是什么药| 行尸走肉什么意思| 吼不住是什么意思| 看病人送什么水果| 天秤座和什么星座最不配| 西兰花是什么季节的蔬菜| 你太low了是什么意思| tap是什么意思| 黄精什么人不能吃| 2011年是什么生肖| 骨折吃什么补品| 狗狗胰腺炎吃什么药| 胃热吃什么食物好| 检察院是做什么的| 大圆脸适合什么发型| 为什么崴脚了休息一晚脚更疼| 茶色尿是什么原因引起的| 做梦梦见兔子是什么意思| 粘纤是什么面料| 饭铲头是什么蛇| 暗财是什么意思| 咳嗽发烧是什么原因| 纤支镜检查是用来查什么的| 游车河什么意思| 中元节应该说什么| 脑膜炎是什么病严重吗| 男宝胶囊为什么不建议吃| 扒灰是什么意思| 五不遇时是什么意思| 忖量是什么意思| 如厕什么意思| 人体最大的消化腺是什么| 嘴唇一圈发黑是什么原因造成的| 什么呼什么应| 属马的和什么属相最配| 拉仇恨是什么意思| 喷的右边念什么| 最贵的金属是什么| 感冒喝什么汤| 什么的微风填空| 为什么会晕3d| 留低是什么意思| 竹外桃花三两枝的下一句是什么| 肩周炎口服什么药最好| 陶渊明是什么派诗人| 镇团委书记是什么级别| u是什么意思| 见招拆招下一句是什么| 直接胆红素是什么| 生死离别代表什么生肖| 梦见找鞋子是什么意思| 女人手心热吃什么调理| 为什么日语怎么说| 黑皮肤适合穿什么颜色的衣服| 风疹病毒是什么意思| 耳朵疼是什么原因| 什么叫法令纹| 补肝血吃什么药| 甲状腺病变是什么意思| 柔顺剂有什么用| 怕金森是什么症状| 过期的啤酒能干什么| 天厨贵人是什么意思| 盆腔炎用什么药最好| 外科看什么病| 血压高不能吃什么| 炖乌鸡汤放什么配料| 烧碱是什么| 无伤大雅是什么意思| 尿酸高喝什么水最好| 病毒的繁殖方式是什么| 琼脂是什么东西| 耳石症是什么意思| 体寒湿气重喝什么茶好| 悲智双运什么意思| 床垫什么样的好| 部首和偏旁有什么区别| 梦见盖新房子是什么意思| 拉直和软化有什么区别| 孔雀开屏是什么行为| 透明质酸钠是什么东西| 吃茶油对身体有什么好处| 手汗脚汗多是什么原因| 用什么可以全身美白| 指南针是什么时候发明的| 处女膜破了什么症状| 刮宫后能吃什么水果| 头疼吃什么好| 认知障碍是什么意思| 人经常放屁是什么原因| 山药对人体有什么好处| 燕子进屋来有什么兆头| 腹腔淋巴结是什么意思| 一个口一个甫念什么| 2.5什么星座| 什么是低碳生活| 胃肠感冒什么症状| 水印相机是什么意思| g是什么牌子| 跳蚤吃什么| 身心疲惫是什么意思| 卵巢早衰有什么症状| 问号像什么| 美国为什么要打伊拉克| 波折是什么意思| 脑供血不足做什么检查| item是什么意思| 白矾是什么东西| 节律是什么意思| 小孩子不吃饭是什么原因引起的| 吃什么英语怎么说| 休渔期是什么时候| 深圳为什么叫鹏城| 弯弯是什么意思| 为什么汤泡饭对胃不好| 伊人什么意思| 一什么港湾| 吃东西恶心想吐是什么原因| 笔名是什么意思| 装修都包括什么| 言重了是什么意思| 杜冷丁是什么药| 撸铁是什么| 黄疸高是什么原因引起的| 迪桑特属于什么档次的| 多维元素片有什么作用| 身份证借给别人有什么危害性| 脂蛋白a高吃什么药| 前面有个豹子是什么车| 肝肾不足吃什么中成药| 喝可乐有什么好处| 什么食物利尿效果最好| 为什么瘦不下来| 3月份什么星座| 稀饭和粥有什么区别| 胃阳不足吃什么中成药| 端午节晚上吃什么| 洗衣机什么品牌好| 京东e卡是什么| 女性痔疮挂什么科室| 农字五行属什么| 女人左下眼皮跳是什么预兆| 防空警报是什么| 民兵是干什么的| 皮脂腺痣是什么原因引起的| 乳头疼吃什么药| 划船是什么意思| 降血糖吃什么菜| 扁桃体结石有什么危害| 清鱼是什么鱼| 养什么能清理鱼缸粪便| 1是什么数| pr是什么工作| 7点到9点是什么时辰| 国家三有保护动物是什么意思| 一个黑一个出读什么| 梦见背小孩是什么意思| 六月六吃什么| 青鸾是什么意思| 大学院长是什么级别| 为什么身上会出现淤青| 四季花是什么花| 崽崽是什么意思| 包干费用是什么意思| 为什么手脚冰凉还出汗| 大象灰配什么颜色好看| 九月三号是什么日子| 血小板分布宽度低是什么原因| 烟嗓是什么意思| 无痛人流后吃什么对身体恢复比较好| 什么是情商高| 做梦梦到狗是什么征兆| 梦见掉粪坑里了是什么意思| 打了麻药有什么副作用| 妇科臭氧治疗是什么| au999是什么意思| 羊五行属什么| loveyourself什么意思| 槟子是什么水果| 手掌心经常出汗是什么原因| 一个口一个者念什么| 阴沟肠杆菌是什么病| 寿司醋可以用什么代替| 猫尿床是因为什么原因| 女人大姨妈来了吃什么最好| 为什么会打嗝| 草字头一个辛读什么| 中药龙骨是什么东西| 狗狗取什么名字| 么么么是什么意思| 排卵试纸什么时候测最准确| 陈凯歌为什么不娶倪萍| 西柚是什么意思| 舌面有裂纹是什么原因| uu解脲脲原体阳性是什么意思| 鸽子和什么一起炖汤最有营养| 舌苔厚是什么原因| 尿路感染需要做什么检查| 桃子不能和什么食物一起吃| 军长相当于地方什么官| 人为什么要日b| 湿疹挂什么科| 癫痫病吃什么药最好| 梦见已故的父母是什么兆头| 嗓子有异物感堵得慌吃什么药| 梦到自己掉牙齿是什么预兆| 什么鱼蛋白质含量高| 千千结是什么意思| 黄牛用的什么抢票软件| 黑魔鬼烟为什么是禁烟| 什么是马赛克| 米醋和陈醋有什么区别| 克加寸念什么| 罗可以组什么词| 什么情况下需要会诊| 尖酸刻薄什么意思| honor是什么牌子的手机| 耐力是什么意思| 百度Jump to content

李冰冰少女打扮机场玩走秀 满面春风约会小男友

From Wikipedia, the free encyclopedia
百度 第三节,杰克逊先是扣篮命中,随后杰克逊快攻抛投命中,双方比分差距被缩小到13分,不过此后骑士再次打出一波流高潮,南斯连续攻击内线得手,詹姆斯也在内线打2+1,虽然加罚没有打进,但骑士打出一波10-0,骑士取得74-51领先,第三节中段,两队比分交替上升,2分35秒,詹姆斯打成极限2+1,骑士取得90-63领先,1分45秒,詹姆斯三分命中三分,骑士取得30分领先,虽然太阳尽力追分,但是骑士还是以93-71领先结束第三节。

Numbers written from 0 to 9
The ten digits of the Arabic numerals, in order of value

A numerical digit (often shortened to just digit) or numeral is a single symbol used alone (such as "1"), or in combinations (such as "15"), to represent numbers in positional notation, such as the common base 10. The name "digit" originates from the Latin digiti meaning fingers.[1]

For any numeral system with an integer base, the number of different digits required is the absolute value of the base. For example, decimal (base 10) requires ten digits (0 to 9), and binary (base 2) requires only two digits (0 and 1). Bases greater than 10 require more than 10 digits, for instance hexadecimal (base 16) requires 16 digits (usually 0 to 9 and A to F).

Overview

[edit]

In a basic digital system, a numeral is a sequence of digits, which may be of arbitrary length. Each position in the sequence has a place value, and each digit has a value. The value of the numeral is computed by multiplying each digit in the sequence by its place value, and summing the results.

Digital values

[edit]

Each digit in a number system represents an integer. For example, in decimal the digit "1" represents the integer one, and in the hexadecimal system, the letter "A" represents the number ten. A positional number system has one unique digit for each integer from zero up to, but not including, the radix of the number system.

Thus in the positional decimal system, the numbers 0 to 9 can be expressed using their respective numerals "0" to "9" in the rightmost "units" position. The number 12 is expressed with the numeral "2" in the units position, and with the numeral "1" in the "tens" position, to the left of the "2" while the number 312 is expressed with three numerals: "3" in the "hundreds" position, "1" in the "tens" position, and "2" in the "units" position.

Computation of place values

[edit]

The decimal numeral system uses a decimal separator, commonly a period in English, or a comma in other European languages,[2] to denote the "ones place" or "units place",[3][4][5] which has a place value one. Each successive place to the left of this has a place value equal to the place value of the previous digit times the base. Similarly, each successive place to the right of the separator has a place value equal to the place value of the previous digit divided by the base. For example, in the numeral 10.34 (written in base 10),

the 0 is immediately to the left of the separator, so it is in the ones or units place, and is called the units digit or ones digit;[6][7][8]
the 1 to the left of the ones place is in the tens place, and is called the tens digit;[9]
the 3 is to the right of the ones place, so it is in the tenths place, and is called the tenths digit;[10]
the 4 to the right of the tenths place is in the hundredths place, and is called the hundredths digit.[10]

The total value of the number is 1 ten, 0 ones, 3 tenths, and 4 hundredths. The zero, which contributes no value to the number, indicates that the 1 is in the tens place rather than the ones place.

The place value of any given digit in a numeral can be given by a simple calculation, which in itself is a complement to the logic behind numeral systems. The calculation involves the multiplication of the given digit by the base raised by the exponent n ? 1, where n represents the position of the digit from the separator; the value of n is positive (+), but this is only if the digit is to the left of the separator. And to the right, the digit is multiplied by the base raised by a negative (?) n. For example, in the number 10.34 (written in base 10),

the 1 is second to the left of the separator, so based on calculation, its value is,
the 4 is second to the right of the separator, so based on calculation its value is,

History

[edit]
Western Arabic 0 1 2 3 4 5 6 7 8 9
Eastern Arabic ? ? ? ? ? ? ? ? ? ?
Persian ? ? ? ? ? ? ? ? ? ?
Devanagari ? ? ? ? ? ? ? ? ? ?
Kadamba ? ? ? ? ? ? ? ? ? ?

The first true written positional numeral system is considered to be the Hindu–Arabic numeral system. This system was established by the 7th century in India,[11] but was not yet in its modern form because the use of the digit zero had not yet been widely accepted. Instead of a zero sometimes the digits were marked with dots to indicate their significance, or a space was used as a placeholder. The first widely acknowledged use of zero was in 876.[12] The original numerals were very similar to the modern ones, even down to the glyphs used to represent digits.[11]

The digits of the Maya numeral system

By the 13th century, Western Arabic numerals were accepted in European mathematical circles (Fibonacci used them in his Liber Abaci). They began to enter common use in the 15th century.[13] By the end of the 20th century virtually all non-computerized calculations in the world were done with Arabic numerals, which have replaced native numeral systems in most cultures.

Other historical numeral systems using digits

[edit]

The exact age of the Maya numerals is unclear, but it is possible that it is older than the Hindu–Arabic system. The system was vigesimal (base 20), so it has twenty digits. The Mayas used a shell symbol to represent zero. Numerals were written vertically, with the ones place at the bottom. The Mayas had no equivalent of the modern decimal separator, so their system could not represent fractions.

The Thai numeral system is identical to the Hindu–Arabic numeral system except for the symbols used to represent digits. The use of these digits is less common in Thailand than it once was, but they are still used alongside Arabic numerals.

The rod numerals, the written forms of counting rods once used by Chinese and Japanese mathematicians, are a decimal positional system able to represent not only zero but also negative numbers. Counting rods themselves predate the Hindu–Arabic numeral system. The Suzhou numerals are variants of rod numerals.

Rod numerals (vertical)
0 1 2 3 4 5 6 7 8 9
?0 ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9

Modern digital systems

[edit]

In computer science

[edit]

The binary (base 2), octal (base 8), and hexadecimal (base 16) systems, extensively used in computer science, all follow the conventions of the Hindu–Arabic numeral system.[14] The binary system uses only the digits "0" and "1", while the octal system uses the digits from "0" through "7". The hexadecimal system uses all the digits from the decimal system, plus the letters "A" through "F", which represent the numbers 10 to 15 respectively.[15] When the binary system is used, the term "bit(s)" is typically used as an alternative for "digit(s)", being a portmanteau of the term "binary digit".

Unusual systems

[edit]

The ternary and balanced ternary systems have sometimes been used. They are both base 3 systems.[16]

Balanced ternary is unusual in having the digit values 1, 0 and ?1. Balanced ternary turns out to have some useful properties and the system has been used in the experimental Russian Setun computers.[17]

Several authors in the last 300 years have noted a facility of positional notation that amounts to a modified decimal representation. Some advantages are cited for use of numerical digits that represent negative values. In 1840 Augustin-Louis Cauchy advocated use of signed-digit representation of numbers, and in 1928 Florian Cajori presented his collection of references for negative numerals. The concept of signed-digit representation has also been taken up in computer design.

Digits in mathematics

[edit]

Despite the essential role of digits in describing numbers, they are relatively unimportant to modern mathematics.[18] Nevertheless, there are a few important mathematical concepts that make use of the representation of a number as a sequence of digits.

Digital roots

[edit]

The digital root is the single-digit number obtained by summing the digits of a given number, then summing the digits of the result, and so on until a single-digit number is obtained.[19]

Casting out nines

[edit]

Casting out nines is a procedure for checking arithmetic done by hand. To describe it, let represent the digital root of , as described above. Casting out nines makes use of the fact that if , then . In the process of casting out nines, both sides of the latter equation are computed, and if they are not equal, the original addition must have been faulty.[20]

Repunits and repdigits

[edit]

Repunits are integers that are represented with only the digit 1. For example, 1111 (one thousand, one hundred and eleven) is a repunit. Repdigits are a generalization of repunits; they are integers represented by repeated instances of the same digit. For example, 333 is a repdigit. The primality of repunits is of interest to mathematicians.[21]

Palindromic numbers and Lychrel numbers

[edit]

Palindromic numbers are numbers that read the same when their digits are reversed.[22] A Lychrel number is a positive integer that never yields a palindromic number when subjected to the iterative process of being added to itself with digits reversed.[23] The question of whether there are any Lychrel numbers in base 10 is an open problem in recreational mathematics; the smallest candidate is 196.[24]

History of ancient numbers

[edit]

Counting aids, especially the use of body parts (counting on fingers), were certainly used in prehistoric times as today. There are many variations. Besides counting ten fingers, some cultures have counted knuckles, the space between fingers, and toes as well as fingers. The Oksapmin culture of New Guinea uses a system of 27 upper body locations to represent numbers.[25]

To preserve numerical information, tallies carved in wood, bone, and stone have been used since prehistoric times.[26] Stone age cultures, including ancient indigenous American groups, used tallies for gambling, personal services, and trade-goods.

A method of preserving numeric information in clay was invented by the Sumerians between 8000 and 3500 BC.[27] This was done with small clay tokens of various shapes that were strung like beads on a string. Beginning about 3500 BC, clay tokens were gradually replaced by number signs impressed with a round stylus at different angles in clay tablets (originally containers for tokens) which were then baked. About 3100  BC, written numbers were dissociated from the things being counted and became abstract numerals.

Between 2700 and 2000 BC, in Sumer, the round stylus was gradually replaced by a reed stylus that was used to press wedge-shaped cuneiform signs in clay. These cuneiform number signs resembled the round number signs they replaced and retained the additive sign-value notation of the round number signs. These systems gradually converged on a common sexagesimal number system; this was a place-value system consisting of only two impressed marks, the vertical wedge and the chevron, which could also represent fractions.[28] This sexagesimal number system was fully developed at the beginning of the Old Babylonia period (about 1950 BC) and became standard in Babylonia.[29]

Sexagesimal numerals were a mixed radix system that retained the alternating base 10 and base 6 in a sequence of cuneiform vertical wedges and chevrons. By 1950 BC, this was a positional notation system. Sexagesimal numerals came to be widely used in commerce, but were also used in astronomical and other calculations. This system was exported from Babylonia and used throughout Mesopotamia, and by every Mediterranean nation that used standard Babylonian units of measure and counting, including the Greeks, Romans and Egyptians. Babylonian-style sexagesimal numeration is still used in modern societies to measure time (minutes per hour) and angles (degrees).[30]

History of modern numbers

[edit]

In China, armies and provisions were counted using modular tallies of prime numbers. Unique numbers of troops and measures of rice appear as unique combinations of these tallies. A great convenience of modular arithmetic is that it is easy to multiply.[31] This makes use of modular arithmetic for provisions especially attractive. Conventional tallies are quite difficult to multiply and divide. In modern times modular arithmetic is sometimes used in digital signal processing.[32]

The oldest Greek system was that of the Attic numerals,[33] but in the 4th century BC they began to use a quasidecimal alphabetic system (see Greek numerals).[34] Jews began using a similar system (Hebrew numerals), with the oldest examples known being coins from around 100 BC.[35]

The Roman empire used tallies written on wax, papyrus and stone, and roughly followed the Greek custom of assigning letters to various numbers. The Roman numerals system remained in common use in Europe until positional notation came into common use in the 16th century.[36]

The Maya of Central America used a mixed base 18 and base 20 system, possibly inherited from the Olmec, including advanced features such as positional notation and a zero.[37] They used this system to make advanced astronomical calculations, including highly accurate calculations of the length of the solar year and the orbit of Venus.[38]

The Incan Empire ran a large command economy using quipu, tallies made by knotting colored fibers.[39] Knowledge of the encodings of the knots and colors was suppressed by the Spanish conquistadors in the 16th century, and has not survived although simple quipu-like recording devices are still used in the Andean region.

Some authorities believe that positional arithmetic began with the wide use of counting rods in China.[40] The earliest written positional records seem to be rod calculus results in China around 400. Zero was first used in India in the 7th century CE by Brahmagupta.[41]

The modern positional Arabic numeral system was developed by mathematicians in India, and passed on to Muslim mathematicians, along with astronomical tables brought to Baghdad by an Indian ambassador around 773.[42]

From India, the thriving trade between Islamic sultans and Africa carried the concept to Cairo. Arabic mathematicians extended the system to include decimal fractions, and Mu?ammad ibn Mūsā al-?wārizmī wrote an important work about it in the 9th  century.[43] The modern Arabic numerals were introduced to Europe with the translation of this work in the 12th century in Spain and Leonardo of Pisa's Liber Abaci of 1201.[44] In Europe, the complete Indian system with the zero was derived from the Arabs in the 12th century.[45]

The binary system (base 2) was propagated in the 17th century by Gottfried Leibniz.[46] Leibniz had developed the concept early in his career, and had revisited it when he reviewed a copy of the I Ching from China.[47] Binary numbers came into common use in the 20th century because of computer applications.[46]

[edit]
West Arabic 0 1 2 3 4 5 6 7 8 9
Asomiya (Assamese); Bengali ? ? ? ? ? ? ? ? ? ?
Devanagari ? ? ? ? ? ? ? ? ? ?
East Arabic ? ? ? ? ? ? ? ? ? ?
Persian ? ? ? ? ? ? ? ? ? ?
Gurmukhi ? ? ? ? ? ? ? ? ? ?
Urdu ? ? ? ? ? ? ? ? ? ?
Chinese (everyday)
Chinese (Traditional)
Chinese (Simplified)
Chinese (Suzhou)
Ge'ez (Ethiopic) ? ? ? ? ? ? ? ? ?
Gujarati ? ? ? ? ? ? ? ? ? ?
Hieroglyphic Egyptian ?? ?? ?? ?? ?? ?? ?? ?? ??
Japanese (everyday)
Japanese (formal)
Kannada ? ? ? ? ? ? ? ? ? ?
Khmer (Cambodia) ? ? ? ? ? ? ? ? ? ?
Lao ? ? ? ? ? ? ? ? ? ?
Limbu ? ? ? ? ? ? ? ? ? ?
Malayalam ? ? ? ? ? ? ? ? ? ?
Mongolian ? ? ? ? ? ? ? ? ? ?
Burmese ? ? ? ? ? ? ? ? ? ?
Oriya ? ? ? ? ? ? ? ? ? ?
Roman I II III IV V VI VII VIII IX
Shan ? ? ? ? ? ? ? ? ? ?
Sinhala ?? ?? ?? ?? ?? ?? ?? ?? ??
Tamil ? ? ? ? ? ? ? ? ? ?
Telugu ? ? ? ? ? ? ? ? ? ?
Thai ? ? ? ? ? ? ? ? ? ?
Tibetan ? ? ? ? ? ? ? ? ? ?
New Tai Lue ? ? ? ? ? ? ? ? ? ?
Javanese ? ? ? ? ? ? ? ? ? ?

Additional numerals

[edit]
1 5 10 20 30 40 50 60 70 80 90 100 500 1000 10000 108
Chinese (ordinary) 二十 三十 四十 五十 六十 七十 八十 九十 五百 亿
Chinese (financial) 贰拾 叁拾 肆拾 伍拾 陆拾 柒拾 捌拾 玖拾 伍佰
Ge?ez ? ? ? ? ? ? ? ? ? ? ? ? ?? ?? ? ??
Roman I V X XX XXX XL L LX LXX LXXX XC C D M X

See also

[edit]

References

[edit]
  1. ^ ""Digit" Origin". dictionary.com. Retrieved 23 May 2015.
  2. ^ Weisstein, Eric W. "Decimal Point". mathworld.wolfram.com. Retrieved 22 July 2020.
  3. ^ Snyder, Barbara Bode (1991). Practical math for the technician : the basics. Englewood Cliffs, N.J.: Prentice Hall. p. 225. ISBN 0-13-251513-X. OCLC 22345295. units or ones place
  4. ^ Andrew Jackson Rickoff (1888). Numbers Applied. D. Appleton & Company. pp. 5–. units' or ones' place
  5. ^ John William McClymonds; D. R. Jones (1905). Elementary Arithmetic. R.L. Telfer. pp. 17–18. units' or ones' place
  6. ^ Richard E. Johnson; Lona Lee Lendsey; William E. Slesnick (1967). Introductory Algebra for College Students. Addison-Wesley Publishing Company. p. 30. units' or ones', digit
  7. ^ R. C. Pierce; W. J. Tebeaux (1983). Operational Mathematics for Business. Wadsworth Publishing Company. p. 29. ISBN 978-0-534-01235-9. ones or units digit
  8. ^ Max A. Sobel (1985). Harper & Row algebra one. Harper & Row. p. 282. ISBN 978-0-06-544000-3. ones, or units, digit
  9. ^ Max A. Sobel (1985). Harper & Row algebra one. Harper & Row. p. 277. ISBN 978-0-06-544000-3. every two-digit number can be expressed as 10t+u when t is the tens digit
  10. ^ a b Taggart, Robert (2000). Mathematics. Decimals and percents. Portland, Me.: J. Weston Walch. pp. 51–54. ISBN 0-8251-4178-8. OCLC 47352965.
  11. ^ a b O'Connor, J. J. and Robertson, E. F. Arabic Numerals. January 2001. Retrieved on 2025-08-07.
  12. ^ Bill Casselman (February 2007). "All for Nought". Feature Column. AMS.
  13. ^ Bradley, Jeremy. "How Arabic Numbers Were Invented". www.theclassroom.com. Retrieved 22 July 2020.
  14. ^ Ravichandran, D. (1 July 2001). Introduction To Computers And Communication. Tata McGraw-Hill Education. pp. 24–47. ISBN 978-0-07-043565-0.
  15. ^ "Hexadecimals". www.mathsisfun.com. Retrieved 22 July 2020.
  16. ^ "Third Base" (PDF). 30 October 2019. Archived from the original (PDF) on 30 October 2019. Retrieved 22 July 2020.
  17. ^ "Development of ternary computers at Moscow State University. Russian Virtual Computer Museum". www.computer-museum.ru. Retrieved 22 July 2020.
  18. ^ Kirillov, A.A. "What are numbers?" (PDF). math.upenn. p. 2. True, if you open a modern mathematical journal and try to read any article, it is very probable that you will see no numbers at all.
  19. ^ Weisstein, Eric W. "Digital Root". mathworld.wolfram.com. Retrieved 22 July 2020.
  20. ^ Weisstein, Eric W. "Casting Out Nines". mathworld.wolfram.com. Retrieved 22 July 2020.
  21. ^ Weisstein, Eric W. "Repunit". MathWorld.
  22. ^ Weisstein, Eric W. "Palindromic Number". mathworld.wolfram.com. Retrieved 22 July 2020.
  23. ^ Weisstein, Eric W. "Lychrel Number". mathworld.wolfram.com. Retrieved 22 July 2020.
  24. ^ Garcia, Stephan Ramon; Miller, Steven J. (13 June 2019). 100 Years of Math Milestones: The Pi Mu Epsilon Centennial Collection. American Mathematical Soc. pp. 104–105. ISBN 978-1-4704-3652-0.
  25. ^ Saxe, Geoffrey B. (2012). Cultural development of mathematical ideas : Papua New Guinea studies. Esmonde, Indigo. Cambridge: Cambridge University Press. pp. 44–45. ISBN 978-1-139-55157-1. OCLC 811060760. The Okspamin body system includes 27 body parts...
  26. ^ Tuniz, C. (Claudio) (24 May 2016). Humans : an unauthorized biography. Tiberi Vipraio, Patrizia, Haydock, Juliet. Switzerland. p. 101. ISBN 978-3-319-31021-3. OCLC 951076018. ...even notches cut into sticks made out of wood, bone or other materials dating back 30,000 years (often referred to as "notched tallies").{{cite book}}: CS1 maint: location missing publisher (link)
  27. ^ Ifrah, Georges (1985). From one to zero : a universal history of numbers. New York: Viking. p. 154. ISBN 0-670-37395-8. OCLC 11237558. And so, by the beginning of the third millennium B.C., the Sumerians and Elamites had adopted the practice of recording numerical information on small, usually rectangular clay tablets
  28. ^ London Encyclop?dia, Or, Universal Dictionary of Science, Art, Literature, and Practical Mechanics: Comprising a Popular View of the Present State of Knowledge; Illustrated by Numerous Engravings and Appropriate Diagrams. T. Tegg. 1845. p. 226.
  29. ^ Neugebauer, O. (11 November 2013). Astronomy and History Selected Essays. Springer Science & Business Media. ISBN 978-1-4612-5559-8.
  30. ^ Powell, Marvin A. (2008). "Sexagesimal System". Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Berlin/Heidelberg: Springer-Verlag. pp. 1998–1999. doi:10.1007/978-1-4020-4425-0_9055. ISBN 978-1-4020-4559-2.
  31. ^ Knuth, Donald Ervin (1998). The art of computer programming. Reading, Mass.: Addison-Wesley Pub. Co. ISBN 0-201-03809-9. OCLC 823849. The advantages of a modular representation are that addition, subtraction, and multiplication are very simple
  32. ^ Echtle, Klaus; Hammer, Dieter; Powell, David (21 September 1994). Dependable Computing - EDCC-1: First European Dependable Computing Conference, Berlin, Germany, October 4-6, 1994. Proceedings. Springer Science & Business Media. p. 439. ISBN 978-3-540-58426-1.
  33. ^ Woodhead, A. G. (Arthur Geoffrey) (1981). The study of Greek inscriptions (2nd ed.). Cambridge: Cambridge University Press. pp. 109–110. ISBN 0-521-23188-4. OCLC 7736343.
  34. ^ Ushakov, Igor (22 June 2012). In the Beginning Was the Number (2). Lulu.com. ISBN 978-1-105-88317-0.
  35. ^ Chrisomalis, Stephen (2010). Numerical notation : a comparative history. Cambridge: Cambridge University Press. p. 157. ISBN 978-0-511-67683-3. OCLC 630115876. The first safely dated instance in which the use of Hebrew alphabetic numerals is certain is on coins from the reign of Hasmonean king Alexander Janneus(103 to 76 BC)...
  36. ^ Silvercloud, Terry David (2007). The Shape of God: Secrets, Tales, and Legends of the Dawn Warriors. Terry David Silvercloud. p. 152. ISBN 978-1-4251-0836-6.
  37. ^ Wheeler, Ruric E.; Wheeler, Ed R. (2001), Modern Mathematics, Kendall Hunt, p. 130, ISBN 9780787290627.
  38. ^ Swami, Devamrita (2002). Searching for Vedic India. The Bhaktivedanta Book Trust. ISBN 978-0-89213-350-5. Maya astronomy finely calculated both the duration of the solar year and the synodical revolution of Venus
  39. ^ "Quipu | Incan counting tool". Encyclopedia Britannica. Retrieved 23 July 2020.
  40. ^ Chen, Sheng-Hong (21 June 2018). Computational Geomechanics and Hydraulic Structures. Springer. p. 8. ISBN 978-981-10-8135-4. … definitely before 400 BC they possessed a similar positional notation based on the ancient counting rods.
  41. ^ "Foundations of mathematics – The reexamination of infinity". Encyclop?dia Britannica. Retrieved 23 July 2020.
  42. ^ The Encyclopedia Britannica. 1899. p. 626.
  43. ^ Struik, Dirk J. (Dirk Jan) (1967). A concise history of mathematics (3d rev. ed.). New York: Dover Publications. ISBN 0-486-60255-9. OCLC 635553.
  44. ^ Sigler, Laurence (11 November 2003). Fibonacci's Liber Abaci: A Translation into Modern English of Leonardo Pisano's Book of Calculation. Springer Science & Business Media. ISBN 978-0-387-40737-1.
  45. ^ Deming, David (2010). Science and technology in world history. Volume 1, The ancient world and classical civilization. Jefferson, N.C.: McFarland & Co. p. 86. ISBN 978-0-7864-5657-4. OCLC 650873991.
  46. ^ a b Yanushkevich, Svetlana N. (2008). Introduction to logic design. Shmerko, Vlad P. Boca Raton: CRC Press. p. 56. ISBN 978-1-4200-6094-2. OCLC 144226528.
  47. ^ Sloane, Sarah (2005). The I Ching for writers : finding the page inside you. Novato, Calif.: New World Library. p. 9. ISBN 1-57731-496-4. OCLC 56672043.
总胆红素高是什么病 11五行属什么 氯雷他定片治什么病 为什么低烧比高烧可怕 运动裤配什么上衣好看
父亲节要送什么礼物好 伏天是什么意思 溥仪和慈禧什么关系 为什么会梦见前男友 吃什么食物能长高
茯苓的作用是什么 老母鸡煲汤放什么食材补气补血 国家三有保护动物是什么意思 2039年是什么年 打蛔虫吃什么药
面瘫什么意思 猫能吃什么 威海有什么好玩的 阴道痒是什么原因 痰栓是什么
中性粒细胞高说明什么hcv8jop8ns6r.cn 什么是口交hcv8jop3ns1r.cn 尿蛋白吃什么药hcv8jop0ns5r.cn 1942年属什么生肖属相chuanglingweilai.com 右肩膀和胳膊疼痛是什么原因hcv8jop2ns3r.cn
尾巴翘上天是什么意思hcv8jop6ns7r.cn 龙凤呈祥是什么意思cl108k.com 9月初是什么星座hcv8jop3ns6r.cn 看望病人送什么东西hcv9jop0ns4r.cn 法西斯战争是什么意思hcv9jop3ns8r.cn
梦到乌龟是什么意思hcv8jop0ns5r.cn 睡眠不好挂什么科hcv9jop5ns8r.cn 此地无银三百两什么意思hcv8jop5ns6r.cn 肛塞有什么作用hcv8jop6ns3r.cn 刘姥姥进大观园什么意思hcv9jop7ns1r.cn
幽门螺杆菌感染有什么症状shenchushe.com 濡湿是什么意思jinxinzhichuang.com 葛根粉有什么功效travellingsim.com 套一是什么意思hcv8jop3ns2r.cn 孕妇梦到被蛇咬是什么意思hcv7jop5ns4r.cn
百度