吃三七粉有什么作用| 常吃生花生有什么好处| 创意是什么意思| 腮腺炎反复发作是什么原因| 睡觉总是做梦是什么原因| 舞蹈考级有什么用| 痛风不能吃什么| 吃了螃蟹后不能吃什么| 眼睛过敏用什么眼药水| 麻醉对身体有什么伤害| 什么是胆囊炎| 蚊子怕什么| ear什么意思| 4pcs是什么意思| 摆拍是什么意思| 儿童水杯什么材质好| 日本豆腐是什么材料| 张什么舞什么| 先兆性流产有什么症状| 清热去湿热颗粒有什么功效| 十二月十八号是什么星座| 肝血管瘤是什么原因引起的| 前列腺增生吃什么食物好| 什么是像素| 为什么会长扁平疣| 贫血缺什么| 梦见数钱是什么预兆| 为什么白带是绿色| 玫瑰花可以和什么一起泡水喝| 有待提高是什么意思| 摩丝是什么| 抗原和抗体有什么区别| 一什么苹果| 宫颈纳囊用什么药治疗效果好| 美国为什么不禁枪| 什么是卤水| 冬练三九夏练三伏是什么意思| 牙齿上白色斑块是什么| 狗又吐又拉稀吃什么药| 象是什么结构| 子宫发炎是什么原因引起的| 精索静脉曲张是什么原因导致的| 婴儿拉奶瓣是什么原因| 腹膜透析是什么意思| 金融办是什么单位| lisa英文名什么意思| 手术后吃什么好| 消瘦是什么意思| 穿匡威的都是什么人| 尿道感染应该吃什么药| 开心果是什么意思| 补气血喝什么泡水| 95年猪是什么命| 水可以加什么偏旁| 疱疹性咽峡炎用什么药| 小腿骨头疼是什么原因| 张什么结什么| 秋葵与什么食物相克| 解酒喝什么好| 万象更新是什么生肖| 什么止咳效果最好最快| 广州白云区有什么好玩的地方| 云吞是什么| 医学检验是干什么的| 股骨长是指什么| 什么是回迁房| 纳少是什么意思| 8月5日是什么星座| 尿常规阳性是什么意思| 手指肿胀什么原因| 绿色和红色混合是什么颜色| 什么情况下月经推迟| 头皮屑结块是什么原因| fox什么意思| 艾灸起水泡是什么原因| 蜂蜜有什么功效和作用| 古天乐属什么生肖| 一花一世界一叶一菩提是什么意思| 什么是基本养老金| 长痘不能吃什么| 71年出生属什么生肖| 什么鸟叫声最好听| 北京的区长是什么级别| 白带增多是什么原因| 在眼皮老跳是什么征兆| 镜花水月是什么意思| 帝旺是什么意思| 担当是什么| 闰六月要给父母买什么| 舌息心念什么| 国家电网需要什么专业| jeans是什么品牌| 老鼠爱吃什么食物| 左侧卵巢囊肿是什么原因引起的| 血热吃什么药效果好| 震仰盂什么意思| 深深是什么意思| urea是什么意思| 什么是跨域| 琥珀色是什么颜色| 低血糖吃什么食物| 梦见下大雨是什么征兆| 脑子瓦特了什么意思| moo是什么意思| 带状疱疹是什么样的| 阁字五行属什么| 脾胃不好吃什么食物| 洛索洛芬钠片和布洛芬有什么区别| 老头晕是什么原因引起的| 松鼠尾巴像什么| 宝宝湿疹用什么药膏| phe是什么氨基酸| 女人喝茶有什么好处| 垂盆草长什么样| 可见原始心管搏动是什么意思| 眼黄瘤什么方法治疗最好| 宫颈囊肿多发是什么意思| 饱和什么意思| hpv是什么病毒| 什么血型可以生出o型血| 酸菜鱼加什么配菜好吃| 75年属什么| 成都市花是什么花| 什么是sp| 指甲盖凹凸不平是什么原因| 犀牛吃什么| 凤仙花长什么样| 不寐病是什么意思| 长河落日圆什么意思| 桃花开在什么季节| 打狂犬疫苗挂什么科| aemape是什么牌子| 桂圆跟龙眼有什么区别| 12月6日什么星座| 脚气有什么症状| 吃知柏地黄丸有什么副作用| 排尿少是什么原因| 孕中期同房要注意什么| 乳头痒什么原因| 胰腺炎能吃什么| 掉头发吃什么药| 霉菌感染用什么药| dbm是什么单位| 爸爸的姥姥叫什么| 海参是补什么| 脑血管堵塞吃什么药最好| 手心干燥是什么原因| 2013年是什么年| 白脉病是什么病| 什么药补气血效果最好| 梦见掉牙齿是什么征兆| 吃什么补充维生素d| 梦见大火烧房子是什么意思| 炒作是什么意思| 吃什么下火效果最好| 众里寻他千百度是什么意思| 公历是什么| 半夏生是什么意思| 6月6是什么星座| 安宫牛黄丸什么时候吃| 界限性脑电图是什么意思| 长期服用丙戊酸钠有什么副作用| 刷单是什么意思| 折射率是什么意思| 26是什么意思| 什么是猥亵| handmade是什么牌子| 大忌什么意思| 亦字五行属什么| 7月4日什么星座| 商业保险报销需要什么材料| 水瓶座和什么座最配| 圆是什么图形| 3月29号是什么星座| 纷至沓来什么意思| 井代表什么生肖| 口干舌燥是什么意思| nec投影仪是什么牌子| 汽车abs是什么意思| 蹶是什么意思| eb病毒是什么意思| 做脑ct挂什么科| 子宫内膜脱落是什么意思| 天使什么意思| 射手座女和什么星座最配| 梦见金蛇有什么预兆| 治疗心率过快用什么药效果好| 心肌酶高有什么症状| 苍蝇最怕什么| 嘴唇起小水泡是什么原因| 孕妇可以喝什么饮料| 肠胃不好能吃什么水果| 阴道发白是什么原因| 人活着有什么意思| 还记得年少时的梦吗是什么歌| 尤甚是什么意思| 为什么发动文化大革命| 打2个喷嚏代表什么| 云南白药里面的保险子有什么用| 头发斑秃是什么原因引起的| 流云是什么意思| 普贤菩萨的坐骑是什么| 马凡氏综合症是什么病| 望闻问切什么意思| 试营业是什么意思| 汐字五行属什么| 什么人不能喝大麦茶| 皂角是什么| 覆水难收什么意思| 乌江鱼是什么鱼| 金蝉什么时候出土| 我适合什么发型| 6月13日是什么星座| 蚊虫叮咬擦什么药膏| 眼睛oct检查主要检查什么| a型血和a型血生的孩子是什么血型| 嘴唇周围长痘痘是什么原因| 发来贺电是什么意思| 12点是什么时辰| 什么洗发水去屑好| 变蛋是什么| 慢性胃炎用什么药效果最好| 蛋清加蜂蜜敷脸有什么好处| 伍德氏灯检查什么| 深化是什么意思| 地贫吃什么补血最快| 酿酒用什么菌| 三情六欲是什么意思| 什么日什么秋| 什么东西抗衰老最好| 壁虎长什么样| 除权是什么意思| 墨西哥用什么货币| 狸猫是什么动物| 为什么会胃酸| 什么现象说明奶吸通了| 什么因果才会有双胞胎| 伛偻是什么意思| 身份证穿什么衣服| 靓女是什么意思| 白带多是什么情况| 喝绿茶有什么好处| 什么牙膏好用| 正觉是什么意思| 葡萄打什么药| 什么水果含钾高| 什么人容易得心梗| 脚面麻木是什么原因| 香榧是什么| 波罗蜜多什么意思| bug是什么意思网络用语| 什么天揽月| 清道夫鱼有什么作用| 什么因果才会有双胞胎| 绝对零度是什么意思| 25岁属什么| 12生肖为什么没有猫| 哈乐是什么药| 一什么影子| 右肺上叶结节什么意思| 查甲功是什么意思| 生命线分叉代表什么| 钾高了会出现什么症状| 唯小人与女子难养也什么意思| 百度Jump to content

2018年宾阳炮龙节“百龙舞宾州”

From Wikipedia, the free encyclopedia
Pappus's hexagon theorem: Points X, Y and Z are collinear on the Pappus line. The hexagon is AbCaBc.
Pappus's theorem: affine form
百度   有学生表示,学校的后门就是一条酒吧街。

In mathematics, Pappus's hexagon theorem (attributed to Pappus of Alexandria) states that

  • given one set of collinear points and another set of collinear points then the intersection points of line pairs and and and are collinear, lying on the Pappus line. These three points are the points of intersection of the "opposite" sides of the hexagon .

It holds in a projective plane over any field, but fails for projective planes over any noncommutative division ring.[1] Projective planes in which the "theorem" is valid are called pappian planes.

If one considers a pappian plane containing a hexagon as just described but with sides and parallel and also sides and parallel (so that the Pappus line is the line at infinity), one gets the affine version of Pappus's theorem shown in the second diagram.

If the Pappus line and the lines have a point in common, one gets the so-called little version of Pappus's theorem.[2]

The dual of this incidence theorem states that given one set of concurrent lines , and another set of concurrent lines , then the lines defined by pairs of points resulting from pairs of intersections and and and are concurrent. (Concurrent means that the lines pass through one point.)

Pappus's theorem is a special case of Pascal's theorem for a conic—the limiting case when the conic degenerates into 2 straight lines. Pascal's theorem is in turn a special case of the Cayley–Bacharach theorem.

The Pappus configuration is the configuration of 9 lines and 9 points that occurs in Pappus's theorem, with each line meeting 3 of the points and each point meeting 3 lines. In general, the Pappus line does not pass through the point of intersection of and .[3] This configuration is self dual. Since, in particular, the lines have the properties of the lines of the dual theorem, and collinearity of is equivalent to concurrence of , the dual theorem is therefore just the same as the theorem itself. The Levi graph of the Pappus configuration is the Pappus graph, a bipartite distance-regular graph with 18 vertices and 27 edges.

Proof: affine form

[edit]
Pappus theorem: proof

If the affine form of the statement can be proven, then the projective form of Pappus's theorem is proven, as the extension of a pappian plane to a projective plane is unique.

Because of the parallelity in an affine plane one has to distinct two cases: and . The key for a simple proof is the possibility for introducing a "suitable" coordinate system:

Case 1: The lines intersect at point .
In this case coordinates are introduced, such that (see diagram). have the coordinates .

From the parallelity of the lines one gets and the parallelity of the lines yields . Hence line has slope and is parallel line .

Case 2: (little theorem).
In this case the coordinates are chosen such that . From the parallelity of and one gets and , respectively, and at least the parallelity .

Proof with homogeneous coordinates

[edit]

Choose homogeneous coordinates with

.

On the lines , given by , take the points to be

for some . The three lines are , so they pass through the same point if and only if . The condition for the three lines and with equations to pass through the same point is . So this last set of three lines is concurrent if all the other eight sets are because multiplication is commutative, so . Equivalently, are collinear.

The proof above also shows that for Pappus's theorem to hold for a projective space over a division ring it is both sufficient and necessary that the division ring is a (commutative) field. German mathematician Gerhard Hessenberg proved that Pappus's theorem implies Desargues's theorem.[4][5] In general, Pappus's theorem holds for some projective plane if and only if it is a projective plane over a commutative field. The projective planes in which Pappus's theorem does not hold are Desarguesian projective planes over noncommutative division rings, and non-Desarguesian planes.

The proof is invalid if happen to be collinear. In that case an alternative proof can be provided, for example, using a different projective reference.

Dual theorem

[edit]

Because of the principle of duality for projective planes the dual theorem of Pappus is true:

If 6 lines are chosen alternately from two pencils with centers , the lines

are concurrent, that means: they have a point in common.
The left diagram shows the projective version, the right one an affine version, where the points are points at infinity. If point is on the line than one gets the "dual little theorem" of Pappus' theorem.

If in the affine version of the dual "little theorem" point is a point at infinity too, one gets Thomsen's theorem, a statement on 6 points on the sides of a triangle (see diagram). The Thomsen figure plays an essential role coordinatising an axiomatic defined projective plane.[6] The proof of the closure of Thomsen's figure is covered by the proof for the "little theorem", given above. But there exists a simple direct proof, too:

Because the statement of Thomsen's theorem (the closure of the figure) uses only the terms connect, intersect and parallel, the statement is affinely invariant, and one can introduce coordinates such that (see right diagram). The starting point of the sequence of chords is One easily verifies the coordinates of the points given in the diagram, which shows: the last point coincides with the first point.

Other statements of the theorem

[edit]
Triangles and are perspective from and , and so, also from .

In addition to the above characterizations of Pappus's theorem and its dual, the following are equivalent statements:

  • If the six vertices of a hexagon lie alternately on two lines, then the three points of intersection of pairs of opposite sides are collinear.[7]
  • Arranged in a matrix of nine points (as in the figure and description above) and thought of as evaluating a permanent, if the first two rows and the six "diagonal" triads are collinear, then the third row is collinear.
That is, if are lines, then Pappus's theorem states that must be a line. Also, note that the same matrix formulation applies to the dual form of the theorem when etc. are triples of concurrent lines.[8]
  • Given three distinct points on each of two distinct lines, pair each point on one of the lines with one from the other line, then the joins of points not paired will meet in (opposite) pairs at points along a line.[9]
  • If two triangles are perspective in at least two different ways, then they are perspective in three ways.[4]
  • If and are concurrent and and are concurrent, then and are concurrent.[8]

Origins

[edit]

In its earliest known form, Pappus's Theorem is Propositions 138, 139, 141, and 143 of Book VII of Pappus's Collection.[10] These are Lemmas XII, XIII, XV, and XVII in the part of Book VII consisting of lemmas to the first of the three books of Euclid's Porisms.

The lemmas are proved in terms of what today is known as the cross ratio of four collinear points. Three earlier lemmas are used. The first of these, Lemma III, has the diagram below (which uses Pappus's lettering, with G for Γ, D for Δ, J for Θ, and L for Λ).

Pappus-collection-7-129

Here three concurrent straight lines, AB, AG, and AD, are crossed by two lines, JB and JE, which concur at J. Also KL is drawn parallel to AZ. Then

KJ : JL :: (KJ : AG & AG : JL) :: (JD : GD & BG : JB).

These proportions might be written today as equations:[11]

KJ/JL = (KJ/AG)(AG/JL) = (JD/GD)(BG/JB).

The last compound ratio (namely JD : GD & BG : JB) is what is known today as the cross ratio of the collinear points J, G, D, and B in that order; it is denoted today by (J, G; D, B). So we have shown that this is independent of the choice of the particular straight line JD that crosses the three straight lines that concur at A. In particular

(J, G; D, B) = (J, Z; H, E).

It does not matter on which side of A the straight line JE falls. In particular, the situation may be as in the next diagram, which is the diagram for Lemma X.

Pappus-collection-7-136

Just as before, we have (J, G; D, B) = (J, Z; H, E). Pappus does not explicitly prove this; but Lemma X is a converse, namely that if these two cross ratios are the same, and the straight lines BE and DH cross at A, then the points G, A, and Z must be collinear.

What we showed originally can be written as (J, ∞; K, L) = (J, G; D, B), with ∞ taking the place of the (nonexistent) intersection of JK and AG. Pappus shows this, in effect, in Lemma XI, whose diagram, however, has different lettering:

Pappus-collection-7-137

What Pappus shows is DE.ZH : EZ.HD :: GB : BE, which we may write as

(D, Z; E, H) = (∞, B; E, G).

The diagram for Lemma XII is:

Pappus-collection-7-138

The diagram for Lemma XIII is the same, but BA and DG, extended, meet at N. In any case, considering straight lines through G as cut by the three straight lines through A, (and accepting that equations of cross ratios remain valid after permutation of the entries,) we have by Lemma III or XI

(G, J; E, H) = (G, D; ∞ Z).

Considering straight lines through D as cut by the three straight lines through B, we have

(L, D; E, K) = (G, D; ∞ Z).

Thus (E, H; J, G) = (E, K; D, L), so by Lemma X, the points H, M, and K are collinear. That is, the points of intersection of the pairs of opposite sides of the hexagon ADEGBZ are collinear.

Lemmas XV and XVII are that, if the point M is determined as the intersection of HK and BG, then the points A, M, and D are collinear. That is, the points of intersection of the pairs of opposite sides of the hexagon BEKHZG are collinear.

Notes

[edit]
  1. ^ Coxeter, pp. 236–7
  2. ^ Rolf Lingenberg: Grundlagen der Geometrie, BI-Taschenbuch, 1969, p. 93
  3. ^ However, this does occur when and are in perspective, that is, and are concurrent.
  4. ^ a b Coxeter 1969, p. 238
  5. ^ According to (Dembowski 1968, pg. 159, footnote 1), Hessenberg's original proof Hessenberg (1905) is not complete; he disregarded the possibility that some additional incidences could occur in the Desargues configuration. A complete proof is provided by Cronheim 1953.
  6. ^ W. Blaschke: Projektive Geometrie, Springer-Verlag, 2013, ISBN 3034869320, S. 190
  7. ^ Coxeter, p. 231
  8. ^ a b Coxeter, p. 233
  9. ^ Whicher, chapter 14
  10. ^ Heath (Vol. II, p. 421) cites these propositions. The latter two can be understood as converses of the former two. Kline (p. 128) cites only Proposition 139. The numbering of the propositions is as assigned by Hultsch.
  11. ^ A reason for using the notation above is that, for the ancient Greeks, a ratio is not a number or a geometrical object. We may think of ratio today as an equivalence class of pairs of geometrical objects. Also, equality for the Greeks is what we might today call congruence. In particular, distinct line segments may be equal. Ratios are not equal in this sense; but they may be the same.

References

[edit]
  • Coxeter, Harold Scott MacDonald (1969), Introduction to Geometry (2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-50458-0, MR 0123930
  • Cronheim, A. (1953), "A proof of Hessenberg's theorem", Proceedings of the American Mathematical Society, 4 (2): 219–221, doi:10.2307/2031794, JSTOR 2031794
  • Dembowski, Peter (1968), Finite Geometries, Berlin: Springer-Verlag
  • Heath, Thomas (1981) [1921], A History of Greek Mathematics, New York: Dover Publications
  • Hessenberg, Gerhard (1905), "Beweis des Desarguesschen Satzes aus dem Pascalschen", Mathematische Annalen, 61 (2), Berlin / Heidelberg: Springer: 161–172, doi:10.1007/BF01457558, ISSN 1432-1807, S2CID 120456855
  • Hultsch, Fridericus (1877), Pappi Alexandrini Collectionis Quae Supersunt, Berlin{{citation}}: CS1 maint: location missing publisher (link)
  • Kline, Morris (1972), Mathematical Thought From Ancient to Modern Times, New York: Oxford University Press
  • Pambuccian, Victor; Schacht, Celia (2019), "The axiomatic destiny of the theorems of Pappus and Desargues", in Dani, S. G.; Papadopoulos, A. (eds.), Geometry in history, Springer, pp. 355–399, ISBN 978-3-030-13611-6
  • Whicher, Olive (1971), Projective Geometry, Rudolph Steiner Press, ISBN 0-85440-245-4
[edit]
血小板低是什么问题 酉什么意思 最好的补钙方法是什么 胃一阵一阵的疼吃什么药 loewe是什么牌子
ut是什么意思 吃什么东西补气血 睾丸积液吃什么药最好 8月1日是什么节 男性睾丸一边大一边小是什么原因
登高望远是什么生肖 熊猫属于什么科动物 什么动物没有天敌 属鼠的本命佛是什么佛 凌晨一点多是什么时辰
发物都有什么 为什么会斑秃 肾盂肾炎吃什么药好 双非是什么 车迟国的三个妖怪分别是什么
吃糖醋蒜有什么好处和坏处hcv7jop4ns5r.cn 倍增是什么意思hcv9jop4ns0r.cn 碘酊和碘伏有什么区别naasee.com 摆渡人是什么意思hcv8jop2ns7r.cn 没有高中毕业证有什么影响hcv8jop3ns8r.cn
血管紧张素是什么意思1949doufunao.com 面皮是什么做的hcv7jop9ns8r.cn 70大寿有什么讲究hebeidezhi.com 下嘴唇溃疡是什么原因hcv8jop6ns0r.cn 50至60岁吃什么钙片好hcv8jop3ns8r.cn
ad是什么的缩写hcv8jop3ns1r.cn 男女授受不亲是什么意思hcv9jop6ns6r.cn 今年21岁属什么生肖weuuu.com 不齿是什么意思hcv9jop7ns1r.cn 孕妇血糖高有什么症状hcv9jop2ns7r.cn
h1v是什么意思hcv8jop2ns8r.cn 铜钱癣用什么药hcv9jop7ns9r.cn 五脏六腑是指什么hcv8jop8ns8r.cn 花园里有什么花hcv9jop6ns6r.cn 泪点低什么意思ff14chat.com
百度