手臂酸痛是什么原因| 玉树临风是什么生肖| 冬至为什么吃水饺| 婴儿第一次发烧叫什么| 小孩上火了吃什么降火最快| 七月初七是什么星座| 睡眠障碍吃什么药最好| 资讯是什么意思| 二郎神是什么生肖| 屠苏指的是什么| 叶酸对人体有什么好处| 有什么鱼| 睡眠不好是什么原因| 地格是什么意思| 血热是什么原因| 郑和下西洋是什么朝代| 喝椰子水有什么好处| 低血糖挂什么科| 蒲公英叶和根的功效有什么不同| 女人吃黄芪有什么好处| 什么数码相机好| 重色轻友什么意思| 嘴巴长溃疡是什么原因| 多管闲事是什么意思| 世界上最贵的车是什么车| 身是什么结构的字| 胸闷喘不上气什么原因| 2023年是什么生肖年| xxoo是什么意思| 耳朵老是痒是什么原因| 低钾会出现什么症状| 头胀痛什么原因| 小强是什么意思| 梦见饺子是什么意思| 五花八门什么意思| 子宫内膜9mm意味着什么| 小孩晚上睡觉流口水是什么原因| 怎么判断脸上是什么斑| 特斯拉是什么电池| 多喝酸奶有什么好处| 胃炎吃什么药好使| 3月30日什么星座| hpv疫苗什么时候打最好| 黄金属于五行属什么| 炒木耳为什么会炸锅| 梦见拉屎是什么意思| 腔隙灶是什么意思| 2r是什么意思| 为什么大便是绿色的| 毒龙是什么| 马拉松pb是什么意思| 窦炎症是什么病| 便秘喝什么茶最快排便| 出汗吃什么药| 百香果吃了有什么好处| 尿酸高适合吃什么水果| 鬼怕什么| 什么情况下需要做活检| 区委书记是什么级别| 腋窝痒是什么原因| 晚上尿多什么原因| 剪什么样的发型好看| 什么动物没有骨头| 4点是什么时辰| 哈比是什么意思| 荷花开是什么季节| 新生儿什么时候可以喝水| 寿命是什么意思| 89年的属什么| 脂肪疝是什么病| 外阴瘙痒抹什么药| 陈皮的功效与作用主要治什么病| 饱和脂肪是什么意思| 膝盖疼痛是什么原因| 田螺小子是什么意思| 柯基犬为什么要断尾巴| 最高检检察长什么级别| 塔丝隆是什么面料| 画龙点晴是什么生肖| 夜阑珊是什么意思| rl是什么意思| 什么是真菌感染| 扁桃体1度肿大是什么意思| 眼前的苟且是什么意思| 疣吃什么药能治好| 杜比全景声是什么意思| 吃什么药升血小板最快| 双手抽筋是什么原因| 2月出生是什么星座| 降血脂吃什么| 女生的隐私部位长什么样| 奇花初胎矞矞皇皇是什么意思| 爱被蚊子咬是什么原因| 黑色的屎是什么原因| 谨记的意思是什么| 破壁是什么意思| 什么鱼做酸菜鱼最好吃| 乳头变大是什么原因| 应无所住而生其心什么意思| 什么食物蛋白质含量高| 乙肝不能吃什么东西| 封建思想是什么意思| 孕妇佩戴什么保胎辟邪| 雨水是什么季节| 洗手做羹汤是什么意思| 他将是你的新郎是什么歌| 后卫是什么意思| 青海是什么省| 乙肝五项245阳性是什么意思| 处级是什么级别| 吃了拉肚子的药叫什么| dha不能和什么一起吃| 裸官是什么意思| 附属是什么意思| 女人太瘦吃什么增肥| 手足癣用什么药最好| 第一次同房是什么感觉| 产后恶露是什么| 牙黄是什么原因引起的| 为什么北方人比南方人高| 受体是什么| 健身吃什么| 低密度脂蛋白偏高是什么原因| 创伤急救的原则是什么| 吃什么可以增强免疫力| 一票制什么意思| 爱是什么| 脾虚吃什么中成药| 宫商角徵羽是什么意思| 南瓜和窝瓜有什么区别| 农历九月五行属什么| 甲亢是什么| 阴道瘙痒是什么原因造成的| dvf是什么档次的牌子| 外交是什么意思| 亚麻酸是什么东西| 小鸭子吃什么| 第二聚体高什么意思| 关口是什么意思| 什么是虚拟币| 脚底灼热是什么原因| 芫荽是什么| 执业医师是什么意思| 胃胀是什么感觉| 知行合一什么意思| 卵泡破裂是什么意思| cnn是什么意思| 肾造瘘是什么意思| 尿发黄是什么原因| gtp什么意思| 离线缓存是什么意思| php是什么意思| 钡餐检查能查出什么| 腹部胀痛什么原因| 农历二月是什么月| 手掌横纹代表什么意思| 灵修是什么意思| 夏天吃什么蔬菜| 阳历一月份是什么星座| 一什么缸| 梦到地震是什么意思| 苏轼是什么派诗人| 野生葛根粉有什么功效| 黑吃黑是什么意思| 宫腔内囊性回声是什么意思| 父亲节该送什么礼物| 左边小腹痛什么原因女| 北伐是什么意思| 解绑是什么意思| 女性肝阳上亢吃什么药| ipad什么时候出新款| 直女是什么意思| 脚趾头麻木是什么原因| 铮字五行属什么| 9月20日什么星座| 黑蝴蝶代表什么| 圣诞节送什么好| 8月6日什么星座| 盐糖水有什么功效作用| 杀生电影讲的什么意思| 七杀大运是什么意思| 空五行属什么| 意味深长的意思是什么| 甲减是什么| 张什么舞什么| 判决书什么时候生效| 老人爱睡觉是什么原因| 子宫切除有什么影响| 开封菜是什么意思| 当今社会什么行业前途比较好| 菟丝子是什么| 1月27日什么星座| 咽喉炎吃什么药| 瑄字五行属什么| 四级什么时候报名| 左手麻是什么原因| 肝素是什么| top1什么意思| 2009年是什么生肖年| 例假期间吃什么减肥| n什么意思| 0tc是什么意思| 黄瓜敷脸有什么效果| 胃不好吃什么| 一什么树林| 28度穿什么衣服合适| 277是什么意思| 谷氨酸是什么| 大钱疮抹什么药膏好使| 闺蜜是什么| 阿鼻地狱是什么意思| 狗咬人后狗为什么会死| 逐年是什么意思| 上海元宵节吃什么| o2o是什么意思| 笑点低是什么意思| 效价是什么意思| rj什么意思| 怀孕喝什么汤最有营养| 但闻人语响的但是什么意思| 绿色裤子配什么上衣| 饭后胃疼是什么原因| 百合吃了有什么好处| 什么是夹腿| 冰岛说什么语言| 脚底板痛什么原因| hbv是什么病毒| 指腹为婚是什么意思| 胃酸吃什么食物好得快| shia是什么意思| 洋葱为什么会让人流泪| 脚后跟疼是什么原因引起的| 接见是什么意思| 散光轴位是什么意思| 蚝油是干什么用的| 红斑狼疮吃什么药| 头皮上长疣是什么原因造成的| 痤疮是什么原因引起的| 易烊千玺的爸爸是干什么的| 天是什么生肖| 秀恩爱是什么意思| 什么人容易得脑梗| 甲亢是什么病| 属鸡的守护神是什么菩萨| 先什么后什么| 欧阳修是什么居士| 为什么喝牛奶会长痘| 去医院洗纹身挂什么科| 毛血旺是什么| 金银花和什么搭配喝好| 亦或是什么意思| 眼睛为什么会肿| playboy什么意思| 合疗和医保有什么区别| 牛的三合和六个合生肖是什么| 生理期可以吃什么水果| 盆腔炎吃什么药好得快| 补钙什么季节补最好| 为什么家里有蟑螂| 卵子排出体外是什么样子| 张牙舞爪是什么生肖| 玻璃体混浊用什么眼药水| 褶子是什么意思| 桂枝茯苓丸主治什么病| 百度Jump to content

床单十天不换有…

From Wikipedia, the free encyclopedia
百度 原标题:气象日:学生走进气象科学探索中心零距离体验智慧气象在什么样的天气状况下才能实施人工降雨?如何准确测出某一地区的降雨量?3月23日是世界气象日,今年的主题是智慧气象,长丰县罗塘小学的学生们在老师的带领下来到了长丰气象科学探索中心,借助信息技术手段零距离体验智慧气象。

The hypotenuse c of a right triangle with sides a and b is the Pythagorean sum of a and b.

In mathematics, Pythagorean addition is a binary operation on the real numbers that computes the length of the hypotenuse of a right triangle, given its two sides. Like the more familiar addition and multiplication operations of arithmetic, it is both associative and commutative.

This operation can be used in the conversion of Cartesian coordinates to polar coordinates, and in the calculation of Euclidean distance. It also provides a simple notation and terminology for the diameter of a cuboid, the energy-momentum relation in physics, and the overall noise from independent sources of noise. In its applications to signal processing and propagation of measurement uncertainty, the same operation is also called addition in quadrature.[1] A scaled version of this operation gives the quadratic mean or root mean square.

It is implemented in many programming libraries as the hypot function, in a way designed to avoid errors arising due to limited-precision calculations performed on computers. Donald Knuth has written that "Most of the square root operations in computer programs could probably be avoided if [Pythagorean addition] were more widely available, because people seem to want square roots primarily when they are computing distances."[2]

Definition

[edit]
Hypotenuse calculator
a 3
b 4
c = ab 5

According to the Pythagorean theorem, for a right triangle with side lengths and , the length of the hypotenuse can be calculated as This formula defines the Pythagorean addition operation, denoted here as : for any two real numbers and , the result of this operation is defined to be[3] For instance, the special right triangle based on the Pythagorean triple gives .[4] However, the integer result of this example is unusual: for other integer arguments, Pythagorean addition can produce a quadratic irrational number as its result.[5]

Properties

[edit]

The operation is associative[6][7] and commutative.[6][8] Therefore, if three or more numbers are to be combined with this operation, the order of combination makes no difference to the result: Additionally, on the non-negative real numbers, zero is an identity element for Pythagorean addition. On numbers that can be negative, the Pythagorean sum with zero gives the absolute value:[3] The three properties of associativity, commutativity, and having an identity element (on the non-negative numbers) are the defining properties of a commutative monoid.[9][10]

Applications

[edit]

Distance and diameter

[edit]
Pythagorean addition finds the length of the body diagonal of a rectangular cuboid, or equivalently the length of the vector sum of orthogonal vectors.

The Euclidean distance between two points in the Euclidean plane, given by their Cartesian coordinates and , is[11] In the same way, the distance between three-dimensional points and can be found by repeated Pythagorean addition as[11]

Pythagorean addition can also find the length of an interior diagonal of a rectangle or rectangular cuboid. For a rectangle with sides and , the diagonal length is .[12][13] For a cuboid with side lengths , , and , the length of a body diagonal is .[13]

Coordinate conversion

[edit]

Pythagorean addition (and its implementation as the hypot function) is often used together with the atan2 function (a two-parameter form of the arctangent) to convert from Cartesian coordinates to polar coordinates :[14][15]

Quadratic mean and spread of deviation

[edit]

The root mean square or quadratic mean of a finite set of numbers is times their Pythagorean sum. This is a generalized mean of the numbers.[16]

The standard deviation of a collection of observations is the quadratic mean of their individual deviations from the mean. When two or more independent random variables are added, the standard deviation of their sum is the Pythagorean sum of their standard deviations.[16] Thus, the Pythagorean sum itself can be interpreted as giving the amount of overall noise when combining independent sources of noise.[17]

If the engineering tolerances of different parts of an assembly are treated as independent noise, they can be combined using a Pythagorean sum.[18] In experimental sciences such as physics, addition in quadrature is often used to combine different sources of measurement uncertainty.[19] However, this method of propagation of uncertainty applies only when there is no correlation between sources of uncertainty,[20] and it has been criticized for conflating experimental noise with systematic errors.[21]

Other

[edit]
The energy-momentum relation, visualized as a right triangle

The energy-momentum relation in physics, describing the energy of a moving particle, can be expressed as the Pythagorean sum where is the rest mass of a particle, is its momentum, is the speed of light, and is the particle's resulting relativistic energy.[22]

When combining signals, it can be a useful design technique to arrange for the combined signals to be orthogonal in polarization or phase, so that they add in quadrature.[23][24] In early radio engineering, this idea was used to design directional antennas, allowing signals to be received while nullifying the interference from signals coming from other directions.[23] When the same technique is applied in software to obtain a directional signal from a radio or ultrasound phased array, Pythagorean addition may be used to combine the signals.[25] Other recent applications of this idea include improved efficiency in the frequency conversion of lasers.[24]

In the psychophysics of haptic perception, Pythagorean addition has been proposed as a model for the perceived intensity of vibration when two kinds of vibration are combined.[26]

In image processing, the Sobel operator for edge detection consists of a convolution step to determine the gradient of an image followed by a Pythagorean sum at each pixel to determine the magnitude of the gradient.[27]

Implementation

[edit]

In a 1983 paper, Cleve Moler and Donald Morrison described an iterative method for computing Pythagorean sums, without taking square roots.[3] This was soon recognized to be an instance of Halley's method,[8] and extended to analogous operations on matrices.[7]

Although many modern implementations of this operation instead compute Pythagorean sums by reducing the problem to the square root function, they do so in a way that has been designed to avoid errors arising from the limited-precision calculations performed on computers. If calculated using the natural formula, the squares of very large or small values of and may exceed the range of machine precision when calculated on a computer. This may to an inaccurate result caused by arithmetic underflow and overflow, although when overflow and underflow do not occur the output is within two ulp of the exact result.[28][29][30] Common implementations of the hypot function rearrange this calculation in a way that avoids the problem of overflow and underflow and are even more precise.[31]

If either input to hypot is infinite, the result is infinite. Because this is true for all possible values of the other input, the IEEE 754 floating-point standard requires that this remains true even when the other input is not a number (NaN).[32]

Calculation order

[edit]

The difficulty with the naive implementation is that may overflow or underflow, unless the intermediate result is computed with extended precision. A common implementation technique is to exchange the values, if necessary, so that , and then to use the equivalent form

The computation of cannot overflow unless both and are zero. If underflows, the final result is equal to , which is correct within the precision of the calculation. The square root is computed of a value between 1 and 2. Finally, the multiplication by cannot underflow, and overflows only when the result is too large to represent.[31]

One drawback of this rearrangement is the additional division by , which increases both the time and inaccuracy of the computation. More complex implementations avoid these costs by dividing the inputs into more cases:

  • When is much larger than , , to within machine precision.
  • When overflows, multiply both and by a small scaling factor (e.g. 2?64 for IEEE single precision), use the naive algorithm which will now not overflow, and multiply the result by the (large) inverse (e.g. 264).
  • When underflows, scale as above but reverse the scaling factors to scale up the intermediate values.
  • Otherwise, the naive algorithm is safe to use.

Additional techniques allow the result to be computed more accurately than the naive algorithm, e.g. to less than one ulp.[31] Researchers have also developed analogous algorithms for computing Pythagorean sums of more than two values.[33]

Fast approximation

[edit]

The alpha max plus beta min algorithm is a high-speed approximation of Pythagorean addition using only comparison, multiplication, and addition, producing a value whose error is less than 4% of the correct result. It is computed as for a careful choice of parameters and .[34]

Programming language support

[edit]

Pythagorean addition function is present as the hypot function in many programming languages and their libraries. These include: CSS,[35] D,[36] Fortran,[37] Go,[38] JavaScript (since ES2015),[11] Julia,[39] MATLAB,[40] PHP,[41] and Python.[42] C++11 includes a two-argument version of hypot, and a three-argument version for has been included since C++17.[43] The Java implementation of hypot[44] can be used by its interoperable JVM-based languages including Apache Groovy, Clojure, Kotlin, and Scala.[45] Similarly, the version of hypot included with Ruby extends to Ruby-based domain-specific languages such as Progress Chef.[46] In Rust, hypot is implemented as a method of floating point objects rather than as a two-argument function.[47]

Metafont has Pythagorean addition and subtraction as built-in operations, under the symbols ++ and +-+ respectively.[2]

History

[edit]

The Pythagorean theorem on which this operation is based was studied in ancient Greek mathematics, and may have been known earlier in Egyptian mathematics and Babylonian mathematics; see Pythagorean theorem § History.[48] However, its use for computing distances in Cartesian coordinates could not come until after René Descartes invented these coordinates in 1637; the formula for distance from these coordinates was published by Alexis Clairaut in 1731.[49]

The terms "Pythagorean addition" and "Pythagorean sum" for this operation have been used at least since the 1950s,[18][50] and its use in signal processing as "addition in quadrature" goes back at least to 1919.[23]

From the 1920s to the 1940s, before the widespread use of computers, multiple designers of slide rules included square-root scales in their devices, allowing Pythagorean sums to be calculated mechanically.[51][52][53] Researchers have also investigated analog circuits for approximating the value of Pythagorean sums.[54]

References

[edit]
  1. ^ Johnson, David L. (2017). "12.2.3 Addition in Quadrature". Statistical Tools for the Comprehensive Practice of Industrial Hygiene and Environmental Health Sciences. John Wiley & Sons. p. 289. ISBN 9781119143017.
  2. ^ a b Knuth, Donald E. (1986). The METAFONTbook. Addison-Wesley. p. 80.
  3. ^ a b c Moler, Cleve; Morrison, Donald (1983). "Replacing square roots by Pythagorean sums". IBM Journal of Research and Development. 27 (6): 577–581. CiteSeerX 10.1.1.90.5651. doi:10.1147/rd.276.0577.
  4. ^ This example is from Moler & Morrison (1983). Dubrulle (1983) uses two more integer Pythagorean triples, (119,120,169) and (19,180,181), as examples.
  5. ^ Ellis, Mark W.; Pagni, David (May 2008). "Exploring segment lengths on the Geoboard". Mathematics Teaching in the Middle School. 13 (9). National Council of Teachers of Mathematics: 520–525. doi:10.5951/mtms.13.9.0520. JSTOR 41182606.
  6. ^ a b Falmagne, Jean-Claude (2015). "Deriving meaningful scientific laws from abstract, "gedanken" type, axioms: five examples". Aequationes Mathematicae. 89 (2): 393–435. doi:10.1007/s00010-015-0339-1. MR 3340218. S2CID 121424613.
  7. ^ a b Incertis, F. (March 1985). "A faster method of computing matrix pythagorean sums". IEEE Transactions on Automatic Control. 30 (3): 273–275. doi:10.1109/tac.1985.1103937.
  8. ^ a b Dubrulle, Augustin A. (1983). "A class of numerical methods for the computation of Pythagorean sums". IBM Journal of Research and Development. 27 (6): 582–589. CiteSeerX 10.1.1.94.3443. doi:10.1147/rd.276.0582.
  9. ^ Penner, R. C. (1999). Discrete Mathematics: Proof Techniques and Mathematical Structures. World Scientific. pp. 417–418. ISBN 9789810240882.
  10. ^ Deza, Michel Marie; Deza, Elena (2014). Encyclopedia of Distances. Springer. p. 100. doi:10.1007/978-3-662-44342-2. ISBN 9783662443422.
  11. ^ a b c Manglik, Rohit (2024). "Section 14.22: Math.hypot". Java Script Notes for Professionals. EduGorilla. p. 144. ISBN 9789367840320.
  12. ^ Meyer, J. G. A. (1902). "225. – To find the diagonal of a rectangle when its length and breadth are given". Easy Lessons in Mechanical Drawing & Machine Design: Arranged for Self-instruction, Vol. I. Industrial Publication Company. p. 133.
  13. ^ a b Grieser, Daniel (2018). "6.2 The diagonal of a cuboid". Exploring Mathematics: Problem-Solving and Proof. Springer Undergraduate Mathematics Series. Springer International Publishing. pp. 143–145. doi:10.1007/978-3-319-90321-7. ISBN 9783319903217.
  14. ^ "SIN (3M): Trigonometric functions and their inverses". Unix Programmer's Manual: Reference Guide (4.3 Berkeley Software Distribution Virtual VAX-11 Version ed.). Department of Electrical Engineering and Computer Science, University of California, Berkeley. April 1986.
  15. ^ Beebe, Nelson H. F. (2017). The Mathematical-Function Computation Handbook: Programming Using the MathCW Portable Software Library. Springer. p. 70. ISBN 9783319641102.
  16. ^ a b Weisberg, Herbert F. (1992). Central Tendency and Variability. Quantitative Applications in the Social Sciences. Vol. 83. Sage. pp. 45, 52–53. ISBN 9780803940079.
  17. ^ D. B. Schneider, Error Analysis in Measuring Systems, Proceedings of the 1962 Standards Laboratory Conference, page 94
  18. ^ a b Hicks, Charles R. (March 1955). "Two problems illustrating the use of mathematics in modern industry". The Mathematics Teacher. 48 (3). National Council of Teachers of Mathematics: 130–132. doi:10.5951/mt.48.3.0130. JSTOR 27954826.
  19. ^ Smith, Walter F. (2020). Experimental Physics: Principles and Practice for the Laboratory. CRC Press. pp. 40–41. ISBN 9781498778688.
  20. ^ Drosg, Manfred (2009). "Dealing with Internal Uncertainties". Dealing with Uncertainties. Springer Berlin Heidelberg. pp. 151–172. doi:10.1007/978-3-642-01384-3_8. ISBN 9783642013843.
  21. ^ Barlow, Roger (March 22, 2002). "Systematic errors: facts and fictions". Conference on Advanced Statistical Techniques in Particle Physics. Durham, UK. pp. 134–144. arXiv:hep-ex/0207026.
  22. ^ Kuehn, Kerry (2015). A Student's Guide Through the Great Physics Texts: Volume II: Space, Time and Motion. Undergraduate Lecture Notes in Physics. Springer New York. p. 372. doi:10.1007/978-1-4939-1366-4. ISBN 9781493913664.
  23. ^ a b c Weagant, R. A. (June 1919). "Reception thru static and interference". Proceedings of the IRE. 7 (3): 207–244. doi:10.1109/jrproc.1919.217434. See p. 232.
  24. ^ a b Eimerl, D. (August 1987). "Quadrature frequency conversion". IEEE Journal of Quantum Electronics. 23 (8): 1361–1371. doi:10.1109/jqe.1987.1073521.
  25. ^ Powers, J. E.; Phillips, D. J.; Brandestini, M.; Ferraro, R.; Baker, D. W. (1980). "Quadrature sampling for phased array application". In Wang, Keith Y. (ed.). Acoustical Imaging: Visualization and Characterization. Vol. 9. Springer. pp. 263–273. doi:10.1007/978-1-4684-3755-3_18. ISBN 9781468437553.
  26. ^ Yoo, Yongjae; Hwang, Inwook; Choi, Seungmoon (April 2022). "Perceived intensity model of dual-frequency superimposed vibration: Pythagorean sum". IEEE Transactions on Haptics. 15 (2): 405–415. doi:10.1109/toh.2022.3144290.
  27. ^ Kanopoulos, N.; Vasanthavada, N.; Baker, R.L. (April 1988). "Design of an image edge detection filter using the Sobel operator". IEEE Journal of Solid-State Circuits. 23 (2): 358–367. doi:10.1109/4.996.
  28. ^ Jeannerod, Claude-Pierre; Muller, Jean-Michel; Plet, Antoine (2017). "The classical relative error bounds for computing and in binary floating-point arithmetic are asymptotically optimal". In Burgess, Neil; Bruguera, Javier D.; de Dinechin, Florent (eds.). 24th IEEE Symposium on Computer Arithmetic, ARITH 2017, London, United Kingdom, July 24–26, 2017. IEEE Computer Society. pp. 66–73. doi:10.1109/ARITH.2017.40.
  29. ^ Muller, Jean-Michel; Salvy, Bruno (2024). "Effective quadratic error bounds for floating-point algorithms computing the hypotenuse function". arXiv:2405.03588 [math.NA].
  30. ^ Ziv, Abraham (1999). "Sharp ULP rounding error bound for the hypotenuse function". Mathematics of Computation. 68 (227): 1143–1148. doi:10.1090/S0025-2025-08-06103-5. JSTOR 2584955. MR 1648423.
  31. ^ a b c Borges, Carlos F. (2021). "Algorithm 1014: An Improved Algorithm for hypot(x, y)". ACM Transactions on Mathematical Software. 47 (1): 9:1–9:12. arXiv:1904.09481. doi:10.1145/3428446. S2CID 230588285.
  32. ^ Fog, Agner (April 27, 2020). "Floating point exception tracking and NAN propagation" (PDF). p. 6.
  33. ^ Lefèvre, Vincent; Louvet, Nicolas; Muller, Jean-Michel; Picot, Joris; Rideau, Laurence (2023). "Accurate calculation of Euclidean norms using double-word arithmetic" (PDF). ACM Transactions on Mathematical Software. 49 (1) 1: 1–34. doi:10.1145/3568672. MR 4567887.
  34. ^ Lyons, Richard G. (2010). "13.2 High-speed vector magnitude approximation". Understanding Digital Signal Processing (3rd ed.). Pearson. pp. 13-6 – 13-8.
  35. ^ Cimpanu, Catalin (March 10, 2019). "CSS to get support for trigonometry functions". ZDNet. Retrieved 2025-08-06.
  36. ^ "std.math.algebraic". Phobos Runtime Library Reference, version 2.109.1. D Language Foundation. Retrieved 2025-08-06.
  37. ^ Reid, John (March 13, 2014). "9.6 Error and gamma functions". The new features of Fortran 2008 (PDF) (Report N1891). ISO/IEC JTC 1/SC 22, WG5 international Fortran standards committee. p. 20.
  38. ^ Summerfield, Mark (2012). Programming in Go: Creating Applications for the 21st Century. Pearson Education. p. 66. ISBN 9780321774637.
  39. ^ Nagar, Sandeep (2017). Beginning Julia Programming: For Engineers and Scientists. Apress. p. 105. ISBN 9781484231715.
  40. ^ Higham, Desmond J.; Higham, Nicholas J. (2016). "26.9 Pythagorean sum". MATLAB Guide (3rd ed.). Society for Industrial and Applied Mathematics. pp. 430–432. ISBN 9781611974669.
  41. ^ Atkinson, Leon; Suraski, Zeev (2004). "Listing 13.17: hypot". Core PHP Programming. Prentice Hall. p. 504. ISBN 9780130463463.
  42. ^ Hill, Christian (2020). Learning Scientific Programming with Python (2nd ed.). Cambridge University Press. p. 14. ISBN 9781108787468.
  43. ^ Hanson, Daniel (2024). Learning Modern C++ for Finance. O'Reilly. p. 25. ISBN 9781098100773.
  44. ^ Horton, Ivor (2005). Ivor Horton's Beginning Java 2. John Wiley & Sons. p. 57. ISBN 9780764568749.
  45. ^ van der Leun, Vincent (2017). "Java Class Library". Introduction to JVM Languages: Java, Scala, Clojure, Kotlin, and Groovy. Packt Publishing Ltd. pp. 10–11. ISBN 9781787126589.
  46. ^ Taylor, Mischa; Vargo, Seth (2014). "Mathematical operations". Learning Chef: A Guide to Configuration Management and Automation. O'Reilly Media. p. 40. ISBN 9781491945117.
  47. ^ "Primitive Type f64". The Rust Standard Library. February 17, 2025. Retrieved 2025-08-06.
  48. ^ Maor, Eli (2007). The Pythagorean Theorem: A 4,000-Year History. Princeton, New Jersey: Princeton University Press. pp. 4–15. ISBN 978-0-691-12526-8.
  49. ^ Maor (2007), pp. 133–134.
  50. ^ van Dantzig, D. (1953). "Another form of the weak law of large numbers" (PDF). Nieuw Archief voor Wiskunde. 3rd ser. 1: 129–145. MR 0056872.
  51. ^ Morrell, William E. (January 1946). "A slide rule for the addition of squares". Science. 103 (2665): 113–114. doi:10.1126/science.103.2665.113. JSTOR 1673946.
  52. ^ Dempster, J. R. (April 1946). "A circular slide rule". Science. 103 (2677): 488. doi:10.1126/science.103.2677.488.b. JSTOR 1671874.
  53. ^ Dawson, Bernhard H. (July 1946). "An improved slide rule for the addition of squares". Science. 104 (2688): 18. doi:10.1126/science.104.2688.18.c. JSTOR 1675936.
  54. ^ Stern, T. E.; Lerner, R. M. (April 1963). "A circuit for the square root of the sum of the squares". Proceedings of the IEEE. 51 (4): 593–596. doi:10.1109/proc.1963.2206.
18年属什么生肖 汗疱疹擦什么药 小分子水是什么水 骨质密度增高是什么意思 什么茶降血压
心脏肥大吃什么药好 多少年婚姻是什么婚 摄政王是什么意思 什么是向量 婴儿补铁吃什么铁剂
肉芽是什么 原本是什么意思 春回大地是什么生肖 丙肝是什么病严重吗 葡萄糖阴性什么意思
孕妇吃什么蔬菜对胎儿好 总感觉自己有病是什么心理病 cindy什么意思 临床医学学什么 花斑癣用什么药膏
阴性什么意思hcv8jop6ns1r.cn 大生化挂什么科mmeoe.com 昙花有什么功效与作用hcv9jop0ns6r.cn 丹参治什么病hcv8jop5ns3r.cn 诺贝尔奖为什么没有数学奖hcv8jop8ns2r.cn
石龙子吃什么tiangongnft.com 心结是什么意思fenrenren.com 9月26号是什么星座hcv8jop5ns2r.cn 小伙子是什么意思hcv8jop8ns8r.cn 什么相接hcv8jop7ns8r.cn
蚂蝗长什么样hcv9jop3ns8r.cn wdf是什么意思hcv8jop8ns2r.cn 冬天怕冷夏天怕热是什么体质hcv9jop1ns6r.cn 猫尿床是因为什么原因wuhaiwuya.com 水仙茶适合什么人喝hcv8jop6ns2r.cn
什么是静息心率hcv8jop7ns8r.cn 辰砂是什么hcv8jop3ns6r.cn 豕是什么动物mmeoe.com 为什么会得肿瘤hcv7jop4ns8r.cn 因特网是什么意思hcv8jop6ns7r.cn
百度