甘少一横是什么字| 浛是什么意思| 耳朵里面疼什么原因| 献血有什么好处| 上面一个处下面一个日是什么字| 里急后重吃什么药最好| 吉兆什么意思| 珑骧包属于什么档次| 包裹是什么意思| 舍友什么意思| 囧是什么意思| 为什么会孕吐| 七月份有什么水果| 聚什么会什么| 讳莫如深是什么意思| emr是什么意思| 锦州有什么大学| 什么样的黄河| chloe是什么牌子| 梦见香蕉是什么意思| 刺梨是什么水果| 心慌是什么意思| 验孕棒一条杠什么意思| 肠胃炎发烧吃什么药| 一什么耳朵填量词| 解约是什么意思| 小暑是什么时候| 肠道菌群失调吃什么药| 929是什么星座| 外感是什么意思| 脑死亡是什么意思| 人武部是干什么的| 尿路感染看什么科| 别墅是什么意思| 什么东西越生气越大| 男士阴囊痒用什么药膏| 工作是为了什么| 睾头囊肿是什么意思| 吃什么不会便秘| 左侧肋骨下面是什么器官| 女人生气容易得什么病| 淋巴结有血流信号预示着什么| 什么是直女| 四叶草的寓意是什么| 四季春茶是什么茶| ana谱是查什么病的| 为什么爱出汗| 金价下跌意味着什么| 子宫外怀孕有什么症状| 孤辰寡宿是什么意思| 1947属什么生肖| 对酒当歌是什么生肖| 开眼镜店需要什么设备| 百合是什么植物| 老人嘴唇发紫是什么原因| 乳腺钙化是什么意思| 舅舅的舅舅叫什么| 看见蛇过马路什么征兆| 蓝色妖姬的花语是什么| 推特是什么意思| 什么是抗生素类药物| 人生八苦是什么| 例假不能吃什么水果| mandy是什么意思| 头晕耳鸣是什么原因引起的| 放疗后吃什么恢复的快| 没有力气是什么原因| 编者按是什么意思| 晚上八点是什么时辰| 广东省省长是什么级别| 八月17号是什么星座的| 小结是什么意思| 苯醚甲环唑防治什么病| 尿胆原弱阳性什么意思| 叶酸片治什么病| 地级市市委书记是什么级别| 克霉唑为什么4天一次| 什么花最好养| 急性阑尾炎可以吃什么| 核磁dwi是什么意思| 奇花异草的异是什么意思| 脚肿是什么病| hc是胎儿的什么意思| 缪读什么| 昙花一现是什么意思| 脊灰疫苗是预防什么的| 福五行属性是什么| 头上汗多是什么原因| 什么一色| 芒硝是什么东西| 桃子吃多了有什么坏处| 口腔上颚疼是什么原因| 年柱亡神是什么意思| 三个羊是什么字| 高油酸是什么意思| 龄字五行属什么| 什么飞什么跳| 什么是自锁| 逝者已矣生者如斯是什么意思| 嗓子疼吃什么水果好得快| 血小板高是什么意思| 什么网站可以看黄片| 诺如病毒是什么| 一什么而什么的成语| 杏仁有什么好处| 假唱是什么意思| 1985年属什么| 开小灶是什么意思| 基围虾是什么虾| 阴道什么形状| 关节退行性改变是什么意思| 控是什么意思| 什么气什么现| 肾结石什么原因引起的| 腿水肿是什么原因| dl是什么意思| 复原乳是什么意思| spyder是什么品牌| 一般什么时候排卵| 腰上长痘痘是什么原因| 且行且珍惜什么意思| 疗养是什么意思| 女生打呼噜是什么原因| 荆棘什么意思| 不喜欢是什么意思| 冒冷汗是什么原因| 个人送保是什么意思| 岁月匆匆像一阵风是什么歌| 白头翁是什么动物| 女孩学什么专业好| 胚胎是什么意思| 牙齿一碰就疼是什么原因| 胯骨在什么位置图片| 明知故犯的故是什么意思| 知音是什么意思| 区级以上医院是什么意思| 跳蛋什么感觉| 浅黄色是什么颜色| 4月份是什么星座| 白醋泡脚有什么效果| 公募基金是什么意思| 什么钙片好| 青口是什么东西| 为什么会近视| 君子兰什么时候开花| 息肉样病变是什么意思| 希腊用什么货币| 总掉头发是什么原因女| 25岁属什么| 余田是什么字| 蟠桃为什么是扁的| 9月15号是什么日子| 梦见别人家拆房子是什么预兆| 阴阳两虚吃什么中成药| 95是什么意思| 脚趾头长痣代表什么| 下载什么软件可以赚钱| 什么可以保护眼睛| 起痱子是什么原因| 抬旗是什么意思| 胆黄素高是怎么回事有什么危害| 12月16是什么星座| 出水芙蓉是什么意思| 扎手指放血治什么| 雪蛤是什么| 8月8号是什么星座| 梦见很多狗是什么意思| 手脚软无力是什么原因引起的| 吃什么消炎药可以喝酒| 夏天适合喝什么茶| 乌鱼是什么鱼| 守株待兔是什么意思| 严密是什么意思| 重庆沱茶属于什么茶| 肝囊肿吃什么药| 血压200意味着什么| 尿酸高不能吃什么水果| 血清铁是什么意思| 氯雷他定有什么副作用| qn是什么医嘱| 重庆有什么特产| 吃东西感觉口苦是什么原因| pu是什么元素| 莫西沙星片主治什么病| 嗯是什么意思| 清浅是什么意思| 姓郑的男孩取什么名字好| 醋栗是什么东西| 井柏然原名叫什么| 法令纹是什么| 肠胃炎发烧吃什么药| 石英岩质玉是什么玉| 甘肃属于什么地区| 孩子为什么不愿意上学| 8月开什么花| 4月9号是什么星座| 中秋节适合吃什么菜| 炎症吃什么消炎药| 奄奄一息是什么意思| 匝道是什么| d是什么单位| 小米是什么米| 梅花代表什么象征意义| 手指倒刺是什么原因| 1956年属什么生肖| 有机是什么意思| 鸡蛋清敷脸有什么好处和坏处| 直肠炎有什么症状| 为什么会起荨麻疹| 精油有什么作用| ft是什么单位| 约法三章什么意思| 共青团书记是什么级别| 清明上河图描绘的是什么季节的景象| 为什么指甲有竖纹| 2月5号是什么星座| 1027是什么星座| 痢疾吃什么药| 华丽的近义词是什么| 蛋白粉和乳清蛋白粉有什么区别| 什么是情人| 露酒是什么酒| 上四休二是什么意思| 子宫轻度下垂有什么办法恢复| 喝酸梅汤有什么好处| 食物中毒吃什么药| 理工男是什么意思啊| 用盐水漱口有什么好处| gi食物是什么意思| 睡不着觉挂什么科| 住院需要带什么| biu是什么意思| 月经来了同房会导致什么后果| 白鱼又叫什么鱼| 容易脸红的人是什么原因| 饭后呕吐是什么原因引起的| 谷草谷丙偏高代表什么| 狸猫换太子什么意思| 天梭手表什么档次| 有什么神话故事| 百香果有什么营养| ami是什么牌子| flair呈高信号是什么意思| 颈静脉怒张见于什么病| 妇科检查白细胞酯酶阳性是什么意思| 红参有什么功效| 花胶有什么功效与作用| 宝宝湿疹用什么药膏| 木变石是什么| 牙齿突然出血是什么原因| 绿色加红色是什么颜色| 放低姿态是什么意思| 一龙一什么| 今天股市为什么暴跌| 默念是什么意思| 做梦梦见地震是什么意思| 黄色分泌物是什么原因| 被交警开罚单不交有什么后果| 白化病是什么| 副乳有什么危害吗| 什么的图案| 霍光和卫子夫什么关系| 嗓子沙哑是什么原因| 淡奶油能做什么| 百度Jump to content

老汉推车什么意思

From Wikipedia, the free encyclopedia
百度 但之后双方马上否认了传闻,先是言承旭方表示:事情肯定是误传!目前言本人正在台北筹备工作事宜,3月中下旬计划会来大陆做具体工作事务的推进。

In theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".[1]

In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called a model of computation. There are several models in use, but the most commonly examined is the Turing machine.[2] Computer scientists study the Turing machine because it is simple to formulate, can be analyzed and used to prove results, and because it represents what many consider the most powerful possible "reasonable" model of computation (see Church–Turing thesis).[3] It might seem that the potentially infinite memory capacity is an unrealizable attribute, but any decidable problem[4] solved by a Turing machine will always require only a finite amount of memory. So in principle, any problem that can be solved (decided) by a Turing machine can be solved by a computer that has a finite amount of memory.

History

[edit]

The theory of computation can be considered the creation of models of all kinds in the field of computer science. Therefore, mathematics and logic are used. In the last century, it separated from mathematics and became an independent academic discipline with its own conferences such as FOCS in 1960 and STOC in 1969, and its own awards such as the IMU Abacus Medal (established in 1981 as the Rolf Nevanlinna Prize), the G?del Prize, established in 1993, and the Knuth Prize, established in 1996.

Some pioneers of the theory of computation were Ramon Llull, Alonzo Church, Kurt G?del, Alan Turing, Stephen Kleene, Rózsa Péter, John von Neumann and Claude Shannon.

Branches

[edit]

Automata theory

[edit]
Grammar Languages Automaton Production rules (constraints)
Type-0 Recursively enumerable Turing machine (no restrictions)
Type-1 Context-sensitive Linear-bounded non-deterministic Turing machine
Type-2 Context-free Non-deterministic pushdown automaton
Type-3 Regular Finite-state automaton
and

Automata theory is the study of abstract machines (or more appropriately, abstract 'mathematical' machines or systems) and the computational problems that can be solved using these machines. These abstract machines are called automata. Automata comes from the Greek word (Αυτ?ματα) which means that something is doing something by itself. Automata theory is also closely related to formal language theory,[5] as the automata are often classified by the class of formal languages they are able to recognize. An automaton can be a finite representation of a formal language that may be an infinite set. Automata are used as theoretical models for computing machines, and are used for proofs about computability.

Formal language theory

[edit]
The Chomsky hierarchy
Set inclusions described by the Chomsky hierarchy

Formal language theory is a branch of mathematics concerned with describing languages as a set of operations over an alphabet. It is closely linked with automata theory, as automata are used to generate and recognize formal languages. There are several classes of formal languages, each allowing more complex language specification than the one before it, i.e. Chomsky hierarchy,[6] and each corresponding to a class of automata which recognizes it. Because automata are used as models for computation, formal languages are the preferred mode of specification for any problem that must be computed.

Computability theory

[edit]

Computability theory deals primarily with the question of the extent to which a problem is solvable on a computer. The statement that the halting problem cannot be solved by a Turing machine[7] is one of the most important results in computability theory, as it is an example of a concrete problem that is both easy to formulate and impossible to solve using a Turing machine. Much of computability theory builds on the halting problem result.

Another important step in computability theory was Rice's theorem, which states that for all non-trivial properties of partial functions, it is undecidable whether a Turing machine computes a partial function with that property.[8]

Computability theory is closely related to the branch of mathematical logic called recursion theory, which removes the restriction of studying only models of computation which are reducible to the Turing model.[9] Many mathematicians and computational theorists who study recursion theory will refer to it as computability theory.

Computational complexity theory

[edit]
A representation of the relation among complexity classes

Computational complexity theory considers not only whether a problem can be solved at all on a computer, but also how efficiently the problem can be solved. Two major aspects are considered: time complexity and space complexity, which are respectively how many steps it takes to perform a computation, and how much memory is required to perform that computation.

In order to analyze how much time and space a given algorithm requires, computer scientists express the time or space required to solve the problem as a function of the size of the input problem. For example, finding a particular number in a long list of numbers becomes harder as the list of numbers grows larger. If we say there are n numbers in the list, then if the list is not sorted or indexed in any way we may have to look at every number in order to find the number we're seeking. We thus say that in order to solve this problem, the computer needs to perform a number of steps that grow linearly in the size of the problem.

To simplify this problem, computer scientists have adopted big O notation, which allows functions to be compared in a way that ensures that particular aspects of a machine's construction do not need to be considered, but rather only the asymptotic behavior as problems become large. So in our previous example, we might say that the problem requires steps to solve.

Perhaps the most important open problem in all of computer science is the question of whether a certain broad class of problems denoted NP can be solved efficiently. This is discussed further at Complexity classes P and NP, and P versus NP problem is one of the seven Millennium Prize Problems stated by the Clay Mathematics Institute in 2000. The Official Problem Description was given by Turing Award winner Stephen Cook.

Models of computation

[edit]

Aside from a Turing machine, other equivalent (see Church–Turing thesis) models of computation are in use.

Lambda calculus
A computation consists of an initial lambda expression (or two if you want to separate the function and its input) plus a finite sequence of lambda terms, each deduced from the preceding term by one application of Beta reduction.
Combinatory logic
is a concept which has many similarities to -calculus, but also important differences exist (e.g. fixed point combinator Y has normal form in combinatory logic but not in -calculus). Combinatory logic was developed with great ambitions: understanding the nature of paradoxes, making foundations of mathematics more economic (conceptually), eliminating the notion of variables (thus clarifying their role in mathematics).
μ-recursive functions
a computation consists of a mu-recursive function, i.e. its defining sequence, any input value(s) and a sequence of recursive functions appearing in the defining sequence with inputs and outputs. Thus, if in the defining sequence of a recursive function the functions and appear, then terms of the form 'g(5)=7' or 'h(3,2)=10' might appear. Each entry in this sequence needs to be an application of a basic function or follow from the entries above by using composition, primitive recursion or μ recursion. For instance if , then for 'f(5)=3' to appear, terms like 'g(5)=6' and 'h(5,6)=3' must occur above. The computation terminates only if the final term gives the value of the recursive function applied to the inputs.
Markov algorithm
a string rewriting system that uses grammar-like rules to operate on strings of symbols.
Register machine
is a theoretically interesting idealization of a computer. There are several variants. In most of them, each register can hold a natural number (of unlimited size), and the instructions are simple (and few in number), e.g. only decrementation (combined with conditional jump) and incrementation exist (and halting). The lack of the infinite (or dynamically growing) external store (seen at Turing machines) can be understood by replacing its role with G?del numbering techniques: the fact that each register holds a natural number allows the possibility of representing a complicated thing (e.g. a sequence, or a matrix etc.) by an appropriately huge natural number — unambiguity of both representation and interpretation can be established by number theoretical foundations of these techniques.

In addition to the general computational models, some simpler computational models are useful for special, restricted applications. Regular expressions, for example, specify string patterns in many contexts, from office productivity software to programming languages. Another formalism mathematically equivalent to regular expressions, finite automata are used in circuit design and in some kinds of problem-solving. Context-free grammars specify programming language syntax. Non-deterministic pushdown automata are another formalism equivalent to context-free grammars. Primitive recursive functions are a defined subclass of the recursive functions.

Different models of computation have the ability to do different tasks. One way to measure the power of a computational model is to study the class of formal languages that the model can generate; in such a way to the Chomsky hierarchy of languages is obtained.

References

[edit]
  1. ^ Sipser (2013, p. 1):

    "central areas of the theory of computation: automata, computability, and complexity."

  2. ^ Hodges, Andrew (2012). Alan Turing: The Enigma (The Centenary ed.). Princeton University Press. ISBN 978-0-691-15564-7.
  3. ^ Rabin, Michael O. (June 2012). Turing, Church, G?del, Computability, Complexity and Randomization: A Personal View.
  4. ^ Donald Monk (1976). Mathematical Logic. Springer-Verlag. ISBN 9780387901701.
  5. ^ Hopcroft, John E. and Jeffrey D. Ullman (2006). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Reading, MA: Addison-Wesley. ISBN 978-0-321-45536-9.
  6. ^ Chomsky, N. (1956). "Three models for the description of language". IEEE Transactions on Information Theory. 2 (3): 113–124. doi:10.1109/TIT.1956.1056813. S2CID 19519474.
  7. ^ Alan Turing (1937). "On computable numbers, with an application to the Entscheidungsproblem". Proceedings of the London Mathematical Society. 2 (42). IEEE: 230–265. doi:10.1112/plms/s2-42.1.230. S2CID 73712. Retrieved 6 January 2015.
  8. ^ Henry Gordon Rice (1953). "Classes of Recursively Enumerable Sets and Their Decision Problems". Transactions of the American Mathematical Society. 74 (2). American Mathematical Society: 358–366. doi:10.2307/1990888. JSTOR 1990888.
  9. ^ Martin Davis (2004). The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions (Dover Ed). Dover Publications. ISBN 978-0486432281.

Further reading

[edit]
Textbooks aimed at computer scientists

(There are many textbooks in this area; this list is by necessity incomplete.)

Books on computability theory from the (wider) mathematical perspective
Historical perspective
[edit]
帮凶是什么意思 秋天的落叶像什么 半夜尿多是什么原因 妇科检查清洁度3度什么意思 寸头适合什么脸型
十月初一是什么节 冤家路窄是什么生肖 欣喜若狂是什么意思 是什么元素 薄荷叶泡水喝有什么好处
皮瓣手术是什么意思 什么道路 减肥期间适合吃什么 26度穿什么衣服合适 navy是什么意思
骷髅头是什么牌子 小月子同房有什么危害 什么食物降血糖 消炎吃什么药 拉肚子吃什么食物好得快
玉和翡翠有什么区别hcv9jop0ns3r.cn 兔对冲生肖是什么hcv8jop3ns1r.cn 拉稀吃什么hcv8jop1ns0r.cn 什么样的情况下需要做肠镜hcv9jop6ns4r.cn 什么样的歌声hcv8jop2ns8r.cn
盐酸舍曲林片治疗什么程度的抑郁jiuxinfghf.com 吃的多拉的少是什么原因onlinewuye.com 肝肾不足证是什么意思hcv9jop2ns8r.cn 完蛋是什么意思hcv9jop1ns5r.cn 无功无过是什么意思hcv8jop8ns2r.cn
止盈什么意思hcv8jop5ns7r.cn 九个口是什么字hcv7jop9ns2r.cn 吸烟有害健康为什么国家还生产烟hcv9jop6ns8r.cn 磨人的小妖精是什么意思hcv7jop5ns0r.cn 高血压是什么原因造成的hcv9jop5ns1r.cn
二月七号是什么星座hcv8jop5ns4r.cn 软著有什么用hcv9jop2ns9r.cn 小名是什么意思hcv9jop3ns9r.cn 痹是什么意思hcv9jop1ns2r.cn 医保卡是什么样子的图sanhestory.com
百度