吸水石是什么石头| 牙松动了还疼用什么方法处理最好| 总是嗳气是什么原因| 活塞是什么| 胎盘能治什么病| 孕妇快生了有什么症状| 澳门回归是什么时候| 格格是什么身份| 小针刀是什么手术| 美国为什么有哥伦比亚| 西米是什么| 岳飞属什么生肖| 黄皮肤适合什么颜色的衣服| 云南小黄姜和普通姜有什么区别| 肺脓肿是什么病严重吗| 什么啤酒劲最大| 破伤风有什么作用| 开飞机什么意思| c02是什么意思| 吃什么生发效果最好| 夏天吃什么汤| 火龙果和什么相克| 化学性肝损伤是什么意思| 芹菜和什么一起炒好吃| 宝宝睡觉头上出汗多是什么原因| 湿热体质适合喝什么茶| 为什么海螺里有大海的声音| 底线是什么意思| 手上长老年斑是什么原因| 一个鱼一个台念什么| 洒水车的音乐是什么歌| 吃什么减肚子上的赘肉最快| renewal什么意思| 肠癌是什么症状| 红曲是什么| 飨宴是什么意思| 最好的红酒是什么牌子| 嘴唇舌头发麻什么病兆| 青春永驻是什么意思| 失重感是什么感觉| 你好是什么意思| 指甲不平有凹凸是什么原因| 落花生是什么意思| 舌战群儒是什么意思| 孕晚期破水是什么症状| 朱雀玄武是什么意思| 安门是什么意思| 女人手心热吃什么药好| 你算个什么东西| 生育酚是什么| 四季春是什么茶| 嗓子疼可以吃什么水果| 如是是什么意思| 秘语是什么意思| 不能吃辛辣是指什么| 有黄鼻涕吃什么药| 车前草能治什么病| 阴毛有什么用| 蔓越莓有什么功效| 耳石症是什么原因引起的| 万什么一心| 女人养颜抗衰老吃什么最好| 十二指肠霜斑样溃疡是什么意思| 亓是什么意思| 矬子是什么意思| 煲汤放什么药材补气血| 阅历是什么意思| 什么是业力| 本是同根生相煎何太急是什么意思| 左眉上方有痣代表什么| 血小板低是什么问题| 心脏右边是什么器官| 隐翅虫吃什么| 脑梗什么意思| 最好的减肥方法是什么| 劲旅是什么意思| 女性尿急憋不住尿是什么原因| 5月17日是什么星座| 一什么床| 如果你是什么就什么造句| 扁平足是什么样的| 舌头有裂纹是什么原因| ibm是什么| 黄瓜和青瓜有什么区别| 戊型肝炎是什么病| 虚劳病是什么病| 安字属于五行属什么| 阴险表情什么意思| 胎儿顶臀长是什么意思| 什么补血效果最好最快| 甘油三酯高用什么药好| 导弹是什么意思| amp是什么意思| 拉比是什么意思| 香港为什么不用人民币| 什么夺天工| 贫嘴是什么意思| l是什么字| 中观是什么意思| 子宫下垂是什么症状| 手臂酸痛是什么原因| 五黄煞是什么意思| 大姨妈延迟是什么原因| 59岁生日有什么讲究| 人格是什么意思| 用什么方法治牙疼| 白手套什么意思| 氨酚咖那敏片是什么药| 贝加台念什么| 什么是央企| 蹶是什么意思| 眼睛经常长麦粒肿是什么原因| 智商是什么意思| 脚心痒是什么原因引起的| 梦见死了人是什么征兆| 馍是什么意思| 左耳耳鸣是什么原因| 地下恋是什么意思| 甲状旁腺激素高吃什么药| 湿疹要注意什么| 什么人群不适合吃阿胶糕| 十月一日是什么日子| 阿胶有什么功效| 他达拉非片是什么药| 胃疼吃什么药好的快| 舌头开裂是什么原因| 方知是什么意思| 蹂躏是什么意思| 节制是什么意思| 子宫增厚是什么原因| 为什么会梦到蛇| 痤疮是什么| 有核红细胞是什么意思| rh血型阴性是什么意思| 游走是什么意思| 07年属什么生肖| 切除子宫对身体有什么伤害| 脾大有什么危害| 民间故事有什么| 孕期吃什么| 批准文号是什么| 医生为什么用肥皂洗手| 鸽子咳嗽吃什么药最好| 什么馅的馄饨好吃| 藏青色配什么颜色好看| 吃什么能安神助睡眠| 双侧腋窝淋巴结可见什么意思| 霉菌是什么病| 炖鸡放什么材料| 脑萎缩是什么原因| 假牛肉干是什么做的| 刺五加配什么药治失眠| 什么情况下需要做肠镜| 什么生肖不认识路| 吃什么不会胖又减肥| 心衰的症状是什么| 心静自然凉是什么意思| 什么是负离子| 暮雪是什么意思| 特别提款权是什么意思| fdg代谢增高是什么意思| 0是什么| 悉心栽培什么意思| 咖啡soe是什么意思| 糖尿病人吃什么水果好| 皮肤瘙痒用什么药膏| 耿耿于怀什么意思| 为什么叫新四军| 七情六欲指什么| 慢性肠胃炎吃什么药| 国药准字h代表什么| 什么的舞台| 三专是什么| 指甲看什么科| 短发适合什么脸型| 吃什么补黄体酮最快| 男人做什么运动能提高性功能| 柔软的近义词是什么| 国家发改委主任什么级别| 形体是什么意思| 38岁适合什么护肤品| 什么叫自闭症| 什么是牙周炎| 咳嗽白痰吃什么药| 什么身是胆| 大象的鼻子像什么| 长期不过性生活有什么危害| 突然手发抖是什么原因| 日晡潮热是什么意思| 什么菜好消化| 马太效应什么意思| 肝不好吃什么药最好| 收到是什么意思| 奥地利讲什么语言| 肾积水有什么症状表现| bata鞋属于什么档次| 莲子心和什么搭配最佳治失眠| 开门见什么最吉利| 001是什么意思| 羟苯乙酯是什么东西| 才高八斗是什么动物| 胃溃疡a2期是什么意思| 化肥对人体有什么危害| 鼻梁骨骨折属于什么伤| 扭捏是什么意思| 口腔上颚疼是什么原因| 脑供血不足是什么原因| 犒劳是什么意思| 什么人容易得帕金森病| inr是什么意思| 支气管激发试验阴性是什么意思| 屏保是什么| 共轭什么意思| 尿道感染要吃什么药| 有痔疮不能吃什么食物| 3.1是什么星座| 口臭吃什么好| 紫薇是什么意思| ipa啤酒什么意思| 馊主意是什么意思| 治胃病吃什么药| 6月16日是什么星座| 什么是临床医学| atc是什么意思| 心力衰竭吃什么药| 阳痿吃什么药| 刀伤用什么药愈合最快| 辟谷是什么都不吃吗| 紫得什么| 肝火是什么原因引起的| 平安喜乐什么意思| 什么水果不能一起吃| 小孩肚子疼吃什么药| 一根葱十分钟什么意思| 经常嗓子哑是什么原因| 脑电图能检查出什么疾病| 西瓜与什么食物相克| 受戒是什么意思| 什么叫布施| 肺气肿吃什么药最有效| 碱性磷酸酶偏高说明什么问题| 另起炉灶是什么意思| 咖啡什么牌子的好| 月经失调是什么意思| 打白条是什么意思| 花裙子配什么上衣好看| 崴脚挂什么科| 做爱时间短吃什么药| 2019年出生属什么生肖| 免签是什么意思| 抗体弱阳性是什么意思| 双侧中耳乳突炎是什么意思| spv是什么| 什么3121919Z空间| 怀孕初期分泌物是什么样的| 谷朊粉是什么| 什么叫全日制本科| 肝病有什么反应| 69是什么意思| 脚上长痣代表什么| 观音菩萨成道日是什么意思| 螃蟹过街的歇后语是什么| vr间隙是什么意思| 轻浮是什么意思| 百度Jump to content

璐字五行属什么

From Wikipedia, the free encyclopedia
百度   江西:  对创新创造、成果转化、社会服务等业绩突出的科研机构、高校等,在核定单位绩效工资总量时给予适当倾斜,倾斜部分主要用于科研人员奖励性绩效工资的分配。

Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow.

Vector calculus was developed from the theory of quaternions by J. Willard Gibbs and Oliver Heaviside near the end of the 19th century, and most of the notation and terminology was established by Gibbs and Edwin Bidwell Wilson in their 1901 book, Vector Analysis, though earlier mathematicians such as Isaac Newton pioneered the field.[2] In its standard form using the cross product, vector calculus does not generalize to higher dimensions, but the alternative approach of geometric algebra, which uses the exterior product, does (see § Generalizations below for more).

Basic objects

[edit]

Scalar fields

[edit]

A scalar field associates a scalar value to every point in a space. The scalar is a mathematical number representing a physical quantity. Examples of scalar fields in applications include the temperature distribution throughout space, the pressure distribution in a fluid, and spin-zero quantum fields (known as scalar bosons), such as the Higgs field. These fields are the subject of scalar field theory.

Vector fields

[edit]

A vector field is an assignment of a vector to each point in a space.[3] A vector field in the plane, for instance, can be visualized as a collection of arrows with a given magnitude and direction each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from point to point. This can be used, for example, to calculate work done over a line.

Vectors and pseudovectors

[edit]

In more advanced treatments, one further distinguishes pseudovector fields and pseudoscalar fields, which are identical to vector fields and scalar fields, except that they change sign under an orientation-reversing map: for example, the curl of a vector field is a pseudovector field, and if one reflects a vector field, the curl points in the opposite direction. This distinction is clarified and elaborated in geometric algebra, as described below.

Vector algebra

[edit]

The algebraic (non-differential) operations in vector calculus are referred to as vector algebra, being defined for a vector space and then applied pointwise to a vector field. The basic algebraic operations consist of:

Notations in vector calculus
Operation Notation Description
Vector addition Addition of two vectors, yielding a vector.
Scalar multiplication Multiplication of a scalar and a vector, yielding a vector.
Dot product Multiplication of two vectors, yielding a scalar.
Cross product Multiplication of two vectors in , yielding a (pseudo)vector.

Also commonly used are the two triple products:

Vector calculus triple products
Operation Notation Description
Scalar triple product The dot product of the cross product of two vectors.
Vector triple product The cross product of the cross product of two vectors.

Operators and theorems

[edit]

Differential operators

[edit]

Vector calculus studies various differential operators defined on scalar or vector fields, which are typically expressed in terms of the del operator (), also known as "nabla". The three basic vector operators are:[4]

Differential operators in vector calculus
Operation Notation Description Notational
analogy
Domain/Range
Gradient Measures the rate and direction of change in a scalar field. Scalar multiplication Maps scalar fields to vector fields.
Divergence Measures the scalar of a source or sink at a given point in a vector field. Dot product Maps vector fields to scalar fields.
Curl Measures the tendency to rotate about a point in a vector field in . Cross product Maps vector fields to (pseudo)vector fields.
f denotes a scalar field and F denotes a vector field

Also commonly used are the two Laplace operators:

Laplace operators in vector calculus
Operation Notation Description Domain/Range
Laplacian Measures the difference between the value of the scalar field with its average on infinitesimal balls. Maps between scalar fields.
Vector Laplacian Measures the difference between the value of the vector field with its average on infinitesimal balls. Maps between vector fields.
f denotes a scalar field and F denotes a vector field

A quantity called the Jacobian matrix is useful for studying functions when both the domain and range of the function are multivariable, such as a change of variables during integration.

Integral theorems

[edit]

The three basic vector operators have corresponding theorems which generalize the fundamental theorem of calculus to higher dimensions:

Integral theorems of vector calculus
Theorem Statement Description
Gradient theorem The line integral of the gradient of a scalar field over a curve L is equal to the change in the scalar field between the endpoints p and q of the curve.
Divergence theorem The integral of the divergence of a vector field over an n-dimensional solid V is equal to the flux of the vector field through the (n?1)-dimensional closed boundary surface of the solid.
Curl (Kelvin–Stokes) theorem The integral of the curl of a vector field over a surface Σ in is equal to the circulation of the vector field around the closed curve bounding the surface.
denotes a scalar field and F denotes a vector field

In two dimensions, the divergence and curl theorems reduce to the Green's theorem:

Green's theorem of vector calculus
Theorem Statement Description
Green's theorem The integral of the divergence (or curl) of a vector field over some region A in equals the flux (or circulation) of the vector field over the closed curve bounding the region.
For divergence, F = (M, ?L). For curl, F = (L, M, 0). L and M are functions of (x, y).

Applications

[edit]

Linear approximations

[edit]

Linear approximations are used to replace complicated functions with linear functions that are almost the same. Given a differentiable function f(x, y) with real values, one can approximate f(x, y) for (x, y) close to (a, b) by the formula

The right-hand side is the equation of the plane tangent to the graph of z = f(x, y) at (a, b).

Optimization

[edit]

For a continuously differentiable function of several real variables, a point P (that is, a set of values for the input variables, which is viewed as a point in Rn) is critical if all of the partial derivatives of the function are zero at P, or, equivalently, if its gradient is zero. The critical values are the values of the function at the critical points.

If the function is smooth, or, at least twice continuously differentiable, a critical point may be either a local maximum, a local minimum or a saddle point. The different cases may be distinguished by considering the eigenvalues of the Hessian matrix of second derivatives.

By Fermat's theorem, all local maxima and minima of a differentiable function occur at critical points. Therefore, to find the local maxima and minima, it suffices, theoretically, to compute the zeros of the gradient and the eigenvalues of the Hessian matrix at these zeros.

Generalizations

[edit]

Vector calculus can also be generalized to other 3-manifolds and higher-dimensional spaces.

Different 3-manifolds

[edit]

Vector calculus is initially defined for Euclidean 3-space, which has additional structure beyond simply being a 3-dimensional real vector space, namely: a norm (giving a notion of length) defined via an inner product (the dot product), which in turn gives a notion of angle, and an orientation, which gives a notion of left-handed and right-handed. These structures give rise to a volume form, and also the cross product, which is used pervasively in vector calculus.

The gradient and divergence require only the inner product, while the curl and the cross product also requires the handedness of the coordinate system to be taken into account (see Cross product § Handedness for more detail).

Vector calculus can be defined on other 3-dimensional real vector spaces if they have an inner product (or more generally a symmetric nondegenerate form) and an orientation; this is less data than an isomorphism to Euclidean space, as it does not require a set of coordinates (a frame of reference), which reflects the fact that vector calculus is invariant under rotations (the special orthogonal group SO(3)).

More generally, vector calculus can be defined on any 3-dimensional oriented Riemannian manifold, or more generally pseudo-Riemannian manifold. This structure simply means that the tangent space at each point has an inner product (more generally, a symmetric nondegenerate form) and an orientation, or more globally that there is a symmetric nondegenerate metric tensor and an orientation, and works because vector calculus is defined in terms of tangent vectors at each point.

Other dimensions

[edit]

Most of the analytic results are easily understood, in a more general form, using the machinery of differential geometry, of which vector calculus forms a subset. Grad and div generalize immediately to other dimensions, as do the gradient theorem, divergence theorem, and Laplacian (yielding harmonic analysis), while curl and cross product do not generalize as directly.

From a general point of view, the various fields in (3-dimensional) vector calculus are uniformly seen as being k-vector fields: scalar fields are 0-vector fields, vector fields are 1-vector fields, pseudovector fields are 2-vector fields, and pseudoscalar fields are 3-vector fields. In higher dimensions there are additional types of fields (scalar, vector, pseudovector or pseudoscalar corresponding to 0, 1, n ? 1 or n dimensions, which is exhaustive in dimension 3), so one cannot only work with (pseudo)scalars and (pseudo)vectors.

In any dimension, assuming a nondegenerate form, grad of a scalar function is a vector field, and div of a vector field is a scalar function, but only in dimension 3 or 7[5] (and, trivially, in dimension 0 or 1) is the curl of a vector field a vector field, and only in 3 or 7 dimensions can a cross product be defined (generalizations in other dimensionalities either require vectors to yield 1 vector, or are alternative Lie algebras, which are more general antisymmetric bilinear products). The generalization of grad and div, and how curl may be generalized is elaborated at Curl § Generalizations; in brief, the curl of a vector field is a bivector field, which may be interpreted as the special orthogonal Lie algebra of infinitesimal rotations; however, this cannot be identified with a vector field because the dimensions differ – there are 3 dimensions of rotations in 3 dimensions, but 6 dimensions of rotations in 4 dimensions (and more generally dimensions of rotations in n dimensions).

There are two important alternative generalizations of vector calculus. The first, geometric algebra, uses k-vector fields instead of vector fields (in 3 or fewer dimensions, every k-vector field can be identified with a scalar function or vector field, but this is not true in higher dimensions). This replaces the cross product, which is specific to 3 dimensions, taking in two vector fields and giving as output a vector field, with the exterior product, which exists in all dimensions and takes in two vector fields, giving as output a bivector (2-vector) field. This product yields Clifford algebras as the algebraic structure on vector spaces (with an orientation and nondegenerate form). Geometric algebra is mostly used in generalizations of physics and other applied fields to higher dimensions.

The second generalization uses differential forms (k-covector fields) instead of vector fields or k-vector fields, and is widely used in mathematics, particularly in differential geometry, geometric topology, and harmonic analysis, in particular yielding Hodge theory on oriented pseudo-Riemannian manifolds. From this point of view, grad, curl, and div correspond to the exterior derivative of 0-forms, 1-forms, and 2-forms, respectively, and the key theorems of vector calculus are all special cases of the general form of Stokes' theorem.

From the point of view of both of these generalizations, vector calculus implicitly identifies mathematically distinct objects, which makes the presentation simpler but the underlying mathematical structure and generalizations less clear. From the point of view of geometric algebra, vector calculus implicitly identifies k-vector fields with vector fields or scalar functions: 0-vectors and 3-vectors with scalars, 1-vectors and 2-vectors with vectors. From the point of view of differential forms, vector calculus implicitly identifies k-forms with scalar fields or vector fields: 0-forms and 3-forms with scalar fields, 1-forms and 2-forms with vector fields. Thus for example the curl naturally takes as input a vector field or 1-form, but naturally has as output a 2-vector field or 2-form (hence pseudovector field), which is then interpreted as a vector field, rather than directly taking a vector field to a vector field; this is reflected in the curl of a vector field in higher dimensions not having as output a vector field.

See also

[edit]

References

[edit]

Citations

[edit]
  1. ^ Kreyszig, Erwin; Kreyszig, Herbert; Norminton, E. J. (2011). Advanced Engineering Mathematics (10th ed.). Hoboken, NJ: John Wiley. ISBN 978-0-470-45836-5.
  2. ^ Rowlands, Peter (2017). Newton and the Great World System. World Scientific Publishing. p. 26. doi:10.1142/q0108. ISBN 978-1-78634-372-7.
  3. ^ Galbis, Antonio; Maestre, Manuel (2012). Vector Analysis Versus Vector Calculus. Springer. p. 12. ISBN 978-1-4614-2199-3.
  4. ^ "Differential Operators". Math24. Retrieved 2025-08-06.[permanent dead link]
  5. ^ Lizhong Peng & Lei Yang (1999) "The curl in seven dimensional space and its applications", Approximation Theory and Its Applications 15(3): 66 to 80 doi:10.1007/BF02837124

Sources

[edit]
[edit]
哺乳期感冒了能吃什么药 为什么叫水浒传 茯茶属于什么茶 什么是碳水 魏大勋和李沁什么关系
掉头发多是什么原因 刚生完宝宝的产妇吃什么好 我宣你 是什么意思 下身有点刺痛什么原因 身体发烧是什么原因
1988属什么生肖 痛风应该挂什么科 健脾胃吃什么药 人参归脾丸适合什么人吃 感冒咳嗽挂什么科
孕晚期宫缩是什么感觉 心慌胸闷是什么原因 心脏彩超可以检查什么 搬新家有什么讲究和准备的 猫的胡须是干什么用的
ppt是什么单位hcv9jop4ns1r.cn 为什么会脾虚wuhaiwuya.com 9月份是什么季节hcv9jop2ns9r.cn 三点水一个条读什么xinjiangjialails.com 吵架是什么意思hcv8jop5ns9r.cn
一岁宝宝能吃什么水果hcv9jop7ns3r.cn 什么是全运会hcv8jop9ns5r.cn 金色搭配什么颜色好看hcv8jop3ns6r.cn 高泌乳素血症是什么原因引起的hcv7jop9ns2r.cn 什么是间质性肺炎hcv9jop1ns2r.cn
前列腺增生吃什么药最好hcv7jop5ns4r.cn 孕妇梦见自己出轨是什么意思bjcbxg.com 现在干什么挣钱hcv8jop7ns8r.cn 十月十七是什么星座hcv9jop8ns0r.cn 冠脉cta是什么检查hcv8jop5ns2r.cn
海员是干什么的hcv9jop7ns3r.cn 假冒警察什么罪怎么判hcv9jop7ns2r.cn 胆碱酯酶低是什么原因hcv9jop8ns3r.cn 为什么叫六小龄童hcv9jop7ns2r.cn 喉咙痛吃什么饭菜好hcv8jop6ns9r.cn
百度