经期适合吃什么| 洋葱炒什么| 不成敬意什么意思| 治疗早泄吃什么药| 全身水肿是什么原因引起的| 被蚊子咬了涂什么| 窦道是什么意思| 小月子是什么意思| it是什么行业| 三维彩超主要检查什么| 胃手术后吃什么好| 男人艾灸什么地方壮阳| 拔完智齿吃什么食物好| 十九岁属什么| 兰精莫代尔是什么面料| 秋天穿什么衣服| 唯利是图是什么生肖| 二甲双胍不能和什么药一起吃| 宋江是一个什么样的人| 凿是什么意思| 肝右叶钙化灶什么意思| 睾丸是什么东西| 扁桃体发炎发烧吃什么药| 五味子是什么味道| 牛黄清心丸适合什么人群吃| hpv是什么原因引起的| 苦口婆心是什么生肖| 被褥是什么意思| 嗓子疼头疼吃什么药| 什么样的人容易得脑梗| 摇摇欲坠是什么意思| 优雅知性是什么意思| 6月29日什么星座| 早醒是什么原因| 有什么好吃的外卖| gm是什么单位| 虾青素有什么功效| 生殖器疱疹用什么药| 道貌岸然是什么生肖| 夜黑风高什么意思| 螨虫长什么样| 德国纳粹是什么意思| 鱼水之欢是什么意思| 灵魂伴侣什么意思| 梦见狼是什么意思周公解梦| 什么的天山| 手串13颗代表什么意思| 屎特别臭是什么原因| 天经地义的意思是什么| 郁是什么生肖| 灼热是什么意思| 心脏病有什么症状| 属鼠女和什么属相最配| 11月27号什么星座| 路演是什么意思| 百合病是什么病| 蝎子的天敌是什么| 生物闹钟是什么意思| 心电图窦性心律不齐是什么意思| 张辽字什么| 孕妇适合吃什么零食| 记忆力衰退吃什么药| 脑门长痘痘是什么原因| 为什么身体没力气也没有精神| 吃什么对卵巢好| 猕猴桃树长什么样| 1月12日什么星座| 医保卡有什么用| 潮喷是什么意思| 红代表什么生肖| 秋水伊人是什么意思| 声音嘶哑吃什么药| 梦见酒是什么意思| 桂枝是什么| 雨露均沾是什么意思| esr是什么意思| 山本耀司的品牌叫什么| 子宫动脉阻力高是什么引起的| 大禹的爸爸叫什么| 陌路人是什么意思| 吃什么促进新陈代谢| 6.22什么星座| 势均力敌什么意思| 小孩个子矮小吃什么促进生长发育| bic是什么意思| 叫爸爸是什么意思| 姨妈老是推迟是为什么| 主胰管不扩张是什么意思| 1月11日是什么星座| 九月八号什么星座| 恶对什么| anti是什么意思| 尿道口为什么叫马眼| 盖是什么意思| 为什么吃了避孕药还是怀孕了| 梦见买肉是什么意思| 头汗多是什么原因引起的| 温州什么最出名| 蚰蜒是什么| 蝉鸣声耳鸣是什么原因引起的| 龙涎是什么| 什么可以治早泄| 放风是什么意思| 法令纹用什么填充效果最好| 梦见吵架是什么意思| nba季后赛什么时候开始| 身上长白斑是什么原因造成的| 文雅什么意思| 小弟一阵阵的疼什么原因| 康熙雍正乾隆是什么关系| 车仔面为什么叫车仔面| 甲鱼吃什么东西| tt什么意思| 社保跟医保有什么区别| 一直很困想睡觉是什么原因| 乙肝小二阳是什么意思| 大尾巴狼是什么意思| 什么是应力| 势利眼的人有什么特征| 低烧是什么原因引起的| 血压高会引起什么症状| 玉米须加什么治痛风| 后背不舒服是什么原因| 两女一杯什么意思| 吃什么水果降火最快| 77属什么生肖| 辣木籽主治什么病| 苏联什么时候解体| 起伏跌宕什么意思| 土字旁的有什么字| ab型和o型生的孩子是什么血型| 3月1号是什么星座| 早餐做什么简单又好吃| dazzling什么意思| 人活着到底是为了什么| 减肥喝什么饮料| 鼻窦炎吃什么抗生素| 植物是什么| 女性夜尿多吃什么调理| crocs是什么牌子的鞋| 不满是什么意思| 伤到什么程度打破伤风| 多发淋巴结是什么意思| 什么是宾格| 花生对胃有什么好处| 舍本逐末是什么意思| 小淋巴结是什么意思| 拉肚子什么原因| 乳腺增生样改变是什么意思| 珍馐是什么意思| 任然什么意思| 五月11号是什么星座| 窦性心律什么意思| 甲不开仓财物耗散是什么意思| 拔罐出水是什么原因| 梅西踢什么位置| 男生什么情况想种草莓| 小孩说话不清楚挂什么科| 什么样的智齿需要拔| shiraz是什么名字红酒| pickup是什么意思| 尿酸高有什么危害| 胡牌是什么意思| 怀孕16周要做什么检查| 中字五行属什么| 佝偻是什么意思| 什么时间进伏| 纯牛奶可以做什么美食| 啫啫煲为什么念jue| 黑曜石属于五行属什么| 名创优品是卖什么的| 软装是什么| 产褥热是什么病| 说笑了是什么意思| 身体透支是什么意思| 尿道炎吃什么药| 梦见和死人说话是什么意思| 大便水状是什么原因| 鲍鱼长什么样| 花痴是什么意思| 吕布的坐骑是什么| 脓血症是什么病严重吗| 日食是什么现象| 急性荨麻疹是什么原因引起的| 脸上发痒是什么原因| 什么叫精神病| 梦见金项链是什么意思| 晚上吃什么减肥| 舌头疼痛吃什么药| 客厅挂画有什么讲究| 性瘾是什么意思| bosch是什么牌子| 甲亢不能吃什么东西| 宠物蛇吃什么| 气泡音是什么意思| 肌酸激酶高是什么原因| 耐药是什么意思| 二甲双胍什么时候吃最好| 大地鱼是什么鱼| 碧螺春是什么茶| 洗头膏什么牌子好| 什么是二代身份证| 襄是什么意思| 完美收官是什么意思| 16岁可以做什么工作| 什么的流| 乳腺癌多发于什么年龄| 乐高可以拼什么| 梦到人死了是什么意思| 三分钟热度是什么意思| 尿检肌酐高是什么原因| 助听器什么牌子好| 返流性食管炎用什么药| 洛阳以前叫什么名字| 排骨炖山药有什么功效| 睡不着什么原因| 一年半载是什么意思| 维生素c不能和什么一起吃| 改姓氏需要什么手续| 医学ac是什么意思| 犄角旮旯是什么意思| 美容美体是干什么的| ca是什么病| 脂肪最终消化成什么| 书字五行属什么| 姚字五行属什么| 拉不出来屎是什么原因| 天蝎座喜欢什么样的女生| 什么是心衰| 急性扁桃体炎什么原因导致的| 秋葵炒什么好吃| luxury什么牌子| 12月21日是什么星座| 岔气了吃什么药| 小狗不能吃什么| 为什么13周不让建卡了| 产检是什么意思| 头抖是什么原因| 泡茶用什么杯子最好| 甲亢都有什么症状| 手的皮肤黄是什么原因| 狡黠什么意思| 屁多肚子胀是什么原因| 濡湿是什么意思| 性瘾是什么意思| 以马内利是什么意思| 窦性心律不齐吃什么药| 开铲车需要什么证件| 办理身份证需要什么| 82年属什么的生肖| 丑人多作怪什么意思| 长期口腔溃疡挂什么科| vsop是什么意思| 盆腔镜检查是查什么的| 火碱是什么| 交接是什么意思| 什么地溜达| 美国的国球是什么| 烹饪是什么意思| 唐氏综合症是什么病| 什么是adhd| 鱼翅配什么煲汤最好| 辛属什么五行| 八卦什么意思| 百度Jump to content

全职高手手游职业最新公布 战斗法师枪尖直指天穹

From Wikipedia, the free encyclopedia
百度 安宁线试验段职教站于2017年8月1日开展主体围护结构施工,目前围护结构已完成35%左右。

In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.

More precisely, if are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between is a sequence of elements of R such that

The relations between form a module. One is generally interested in the case where is a generating set of a finitely generated module M, in which case the module of the relations is often called a syzygy module of M. The syzygy module depends on the choice of a generating set, but it is unique up to the direct sum with a free module. That is, if and are syzygy modules corresponding to two generating sets of the same module, then they are stably isomorphic, which means that there exist two free modules and such that and are isomorphic.

Higher order syzygy modules are defined recursively: a first syzygy module of a module M is simply its syzygy module. For k > 1, a kth syzygy module of M is a syzygy module of a (k – 1)-th syzygy module. Hilbert's syzygy theorem states that, if is a polynomial ring in n indeterminates over a field, then every nth syzygy module is free. The case n = 0 is the fact that every finite dimensional vector space has a basis, and the case n = 1 is the fact that K[x] is a principal ideal domain and that every submodule of a finitely generated free K[x] module is also free.

The construction of higher order syzygy modules is generalized as the definition of free resolutions, which allows restating Hilbert's syzygy theorem as a polynomial ring in n indeterminates over a field has global homological dimension n.

If a and b are two elements of the commutative ring R, then (b, –a) is a relation that is said trivial. The module of trivial relations of an ideal is the submodule of the first syzygy module of the ideal that is generated by the trivial relations between the elements of a generating set of an ideal. The concept of trivial relations can be generalized to higher order syzygy modules, and this leads to the concept of the Koszul complex of an ideal, which provides information on the non-trivial relations between the generators of an ideal.

Basic definitions

[edit]

Let R be a ring, and M be a left R-module. A linear relation, or simply a relation between k elements of M is a sequence of elements of R such that

If is a generating set of M, the relation is often called a syzygy of M. It makes sense to call it a syzygy of without regard to because, although the syzygy module depends on the chosen generating set, most of its properties are independent; see § Stable properties, below.

If the ring R is Noetherian, or, at least coherent, and if M is finitely generated, then the syzygy module is also finitely generated. A syzygy module of this syzygy module is a second syzygy module of M. Continuing this way one can define a kth syzygy module for every positive integer k.

Hilbert's syzygy theorem asserts that, if M is a finitely generated module over a polynomial ring over a field, then any nth syzygy module is a free module.

Stable properties

[edit]

Generally speaking, in the language of K-theory, a property is stable if it becomes true by making a direct sum with a sufficiently large free module. A fundamental property of syzygies modules is that there are "stably independent" of choices of generating sets for involved modules. The following result is the basis of these stable properties.

PropositionLet be a generating set of an R-module M, and be other elements of M. The module of the relations between is the direct sum of the module of the relations between and a free module of rank n.

Proof. As is a generating set, each can be written This provides a relation between Now, if is any relation, then is a relation between the only. In other words, every relation between is a sum of a relation between and a linear combination of the s. It is straightforward to prove that this decomposition is unique, and this proves the result.

This proves that the first syzygy module is "stably unique". More precisely, given two generating sets and of a module M, if and are the corresponding modules of relations, then there exist two free modules and such that and are isomorphic. For proving this, it suffices to apply twice the preceding proposition for getting two decompositions of the module of the relations between the union of the two generating sets.

For obtaining a similar result for higher syzygy modules, it remains to prove that, if M is any module, and L is a free module, then M and ML have isomorphic syzygy modules. It suffices to consider a generating set of ML that consists of a generating set of M and a basis of L. For every relation between the elements of this generating set, the coefficients of the basis elements of L are all zero, and the syzygies of ML are exactly the syzygies of M extended with zero coefficients. This completes the proof to the following theorem.

TheoremFor every positive integer k, the kth syzygy module of a given module depends on choices of generating sets, but is unique up to the direct sum with a free module. More precisely, if and are kth syzygy modules that are obtained by different choices of generating sets, then there are free modules and such that and are isomorphic.

Relationship with free resolutions

[edit]

Given a generating set of an R-module, one can consider a free module of L of basis where are new indeterminates. This defines an exact sequence

where the left arrow is the linear map that maps each to the corresponding The kernel of this left arrow is a first syzygy module of M.

One can repeat this construction with this kernel in place of M. Repeating again and again this construction, one gets a long exact sequence

where all are free modules. By definition, such a long exact sequence is a free resolution of M.

For every k ≥ 1, the kernel of the arrow starting from is a kth syzygy module of M. It follows that the study of free resolutions is the same as the study of syzygy modules.

A free resolution is finite of length n if is free. In this case, one can take and (the zero module) for every k > n.

This allows restating Hilbert's syzygy theorem: If is a polynomial ring in n indeterminates over a field K, then every free resolution is finite of length at most n.

The global dimension of a commutative Noetherian ring is either infinite, or the minimal n such that every free resolution is finite of length at most n. A commutative Noetherian ring is regular if its global dimension is finite. In this case, the global dimension equals its Krull dimension. So, Hilbert's syzygy theorem may be restated in a very short sentence that hides much mathematics: A polynomial ring over a field is a regular ring.

Trivial relations

[edit]

In a commutative ring R, one has always abba = 0. This implies trivially that (b, –a) is a linear relation between a and b. Therefore, given a generating set of an ideal I, one calls trivial relation or trivial syzygy every element of the submodule the syzygy module that is generated by these trivial relations between two generating elements. More precisely, the module of trivial syzygies is generated by the relations

such that and otherwise.

History

[edit]

The word syzygy came into mathematics with the work of Arthur Cayley.[1] In that paper, Cayley used it in the theory of resultants and discriminants.[2] As the word syzygy was used in astronomy to denote a linear relation between planets, Cayley used it to denote linear relations between minors of a matrix, such as, in the case of a 2×3 matrix:

Then, the word syzygy was popularized (among mathematicians) by David Hilbert in his 1890 article, which contains three fundamental theorems on polynomials, Hilbert's syzygy theorem, Hilbert's basis theorem and Hilbert's Nullstellensatz.

In his article, Cayley makes use, in a special case, of what was later[3] called the Koszul complex, after a similar construction in differential geometry by the mathematician Jean-Louis Koszul.

Notes

[edit]
  1. ^ 1847[Cayley 1847] A. Cayley, “On the theory of involution in geometry”, Cambridge Math. J. 11 (1847), 52–61. See also Collected Papers, Vol. 1 (1889), 80–94, Cambridge Univ. Press, Cambridge.
  2. ^ [Gel’fand et al. 1994] I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkh?user, Boston, 1994.
  3. ^ Serre, Jean-Pierre Algèbre locale. Multiplicités. (French) Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, 11 Springer-Verlag, Berlin-New York 1965 vii+188 pp.; this is the published form of mimeographed notes from Serre's lectures at the College de France in 1958.

References

[edit]
  • Cox, David; Little, John; O’Shea, Donal (2007). "Ideals, Varieties, and Algorithms". Undergraduate Texts in Mathematics. New York, NY: Springer New York. doi:10.1007/978-0-387-35651-8. ISBN 978-0-387-35650-1. ISSN 0172-6056.
  • Cox, David; Little, John; O’Shea, Donal (2005). "Using Algebraic Geometry". Graduate Texts in Mathematics. New York: Springer-Verlag. doi:10.1007/b138611. ISBN 0-387-20706-6.
  • Eisenbud, David (1995). Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics. Vol. 150. Springer-Verlag. doi:10.1007/978-1-4612-5350-1. ISBN 0-387-94268-8.
  • David Eisenbud, The Geometry of Syzygies, Graduate Texts in Mathematics, vol. 229, Springer, 2005.
什么食物含有维生素b 唵嘛呢叭咪吽什么意思 憨憨是什么意思 糖类抗原是检查什么的 脸上长水泡似的痘痘是什么原因
电灯泡是什么意思 滴虫性阴道炎用什么药 除了胃镜还有什么检查胃的方法吗 外阴痒用什么洗 雌激素是什么意思
蚂蚁的触角有什么作用 关税是什么 心字底的字有什么 儿童喉咙发炎吃什么药 绿色食品是什么
宝宝拉肚子有粘液是什么原因 汉字最多笔画是什么字 执念是什么意思 白细胞计数偏低是什么意思 epr是什么
同人小说是什么意思hcv8jop2ns7r.cn 核心是什么意思hcv8jop7ns5r.cn 子宫内膜薄吃什么药hcv7jop5ns5r.cn 中段尿是什么意思hcv9jop0ns0r.cn 内热吃什么药清热解毒hcv8jop5ns0r.cn
adidas是什么牌子hcv9jop6ns0r.cn 家慈是对什么人的称呼hcv8jop4ns2r.cn 脸上容易出油是什么原因hcv7jop4ns7r.cn 阑尾炎可以吃什么东西dajiketang.com 水晶为什么要消磁gangsutong.com
梦见棉花是什么意思bjcbxg.com 骨科什么意思hcv8jop8ns7r.cn 种什么最赚钱hcv9jop5ns6r.cn 篮球中锋是干什么的hcv8jop5ns5r.cn 脚趾头长痣代表什么xscnpatent.com
股票roe是什么意思hcv9jop1ns5r.cn 地贫是什么病cl108k.com 风凉话是什么意思hlguo.com 宰相相当于现在的什么官hcv9jop0ns5r.cn 正月初一是什么生肖hcv8jop3ns6r.cn
百度