肩周炎吃什么药效果最好| 6月5号什么星座| 不想要孩子用什么办法最好| 幼儿园学什么| 有什么脑筋急转弯| 后背酸疼是什么原因| 阴虚阳亢吃什么中成药| 昆山有什么好玩的地方| 腹泻吃什么药见效最快| 高兴地什么| 睡觉经常流口水是什么原因| ts什么意思网络上| 梦见妈妈出轨预示什么意思| 加德纳菌阳性是什么意思| 缺德是什么意思| 祥五行属什么| 脚干裂用什么药膏| 月子病是什么症状| 嗯呢是什么意思| 血尿是什么颜色的| 什么样的梦才算是胎梦| 左胸隐隐作痛是什么原因| 感冒咳嗽吃什么药| spao是什么牌子| 埋伏牙是什么意思| 肾阳虚喝什么泡水最好| 能够握紧的就别放了是什么歌| 二尖瓣反流什么意思| 两边太阳胀痛什么原因引起的| 黄疸是什么引起的| 什么的眼睛填空| 痔疮长什么样子的图片| im医学上是什么意思| 没什么没什么| 老人脚肿吃什么药消肿| 黄瓜是什么科| 甲醛是什么| 冬瓜炒什么好吃| 原教旨主义是什么意思| 水漂是什么意思| 哦是什么意思在聊天时| 割礼是什么| 附属是什么意思| 革兰阳性杆菌是什么病| 莎字五行属什么| 清宫和刮宫有什么区别| 2月22日什么星座| 爱上一个人是什么感觉| 哈密瓜为什么叫哈密瓜| 菊花茶泡了为什么会变绿| 杭州什么宽带好又便宜| 射手座是什么星象| 家里出现蚂蚁预示什么| 没收个人全部财产是什么意思| 换药挂什么科| 电动车是什么电池| 突然的反义词是什么| 炸腮有什么症状| 头出汗是什么原因| 什么叫打板| 水鱼什么意思| 结肠多发憩室是什么意思| sk-ll是什么牌子| 嗯呢什么意思| 女生补肾吃什么| 最快的速度是什么| 例假提前来是什么原因| 桂字五行属什么| 结婚是什么意思| 肾虚吃什么中药| 羊肉炖什么| 宇宙的外面是什么| 依山傍水是什么意思| 宫腔线不清晰什么意思| 氯雷他定为什么比西替利嗪贵| 双侧卵巢多囊性改变是什么意思| 令郎是什么意思| 女人骨质疏松吃什么最好| 睡觉空调开什么模式| 影响是什么意思| 舌头火辣辣的是什么病| 用进废退是什么意思| 国家为什么要扫黄| 屋尘螨和粉尘螨是什么| 骨头咔咔响是什么原因| 关节痛挂号挂什么科| 水煎是什么意思| ac是什么基团| 89年是什么命| lisa英文名什么意思| nuxe是什么牌子护肤品| 借什么可以不还| 云州是现在的什么地方| 坚果补充什么营养成分| 啤酒和什么不能一起吃| 徐州菜属于什么菜系| 电解质水是什么水| 什么相照| 造势是什么意思| 伞裙搭配什么上衣| 心脏变大是什么原因| 狐臭和腋臭有什么区别| 一朝一夕是什么意思| 什么的冬瓜| 撒尿分叉是什么原因| 食积是什么意思| 捆绑是什么意思| 窈窕淑女是什么意思| 什么情况下需要做造影| 中秋节送什么好| 早餐适合吃什么| 第57个民族是什么民族| 摩羯座男生喜欢什么样的女生| 什么叫环比什么叫同比| 游离脂肪酸是什么| 眉毛上长痘是什么原因| 脑脱髓鞘改变是什么病| 中风是什么| 正常的尿液是什么颜色| 什么鱼适合清蒸| 15是什么意思| 家里进蝙蝠什么预兆| 属猪和什么属相最配| 屈光不正是什么| 骨刺是什么原因引起的| 慢阻肺是什么意思| 什么呼什么应| 产后第一次来月经是什么颜色| 提辖相当于现在什么官| 日本是什么时候投降的| pio是什么意思| 棕色短裤配什么颜色上衣| 随心而欲是什么意思| 惟妙惟肖是什么意思| 谨字五行属什么| qid是什么意思| 生理期为什么不能拔牙| 牙痛什么原因引起的| 蓝莓什么味道| 疱疹在什么情况下传染| 附骨疽是什么病| 早退是什么意思| 喉结肿大是什么原因| 什么叫外阴白斑| butter是什么意思| 肚脐眼痛什么原因| 大姨妈来能吃什么水果| 高血脂挂什么科| 钓鱼有什么好处| 猪心炖什么好吃又营养| 三本是什么| 为什么上课会犯困| 丽珠兰是什么| 盆腔炎用什么药效果好| 下象棋有什么好处| 阴囊潮湿是什么原因造成的| 灰指甲不治疗有什么后果| 7月4号什么星座| 逾期不候什么意思| 雷震子是什么神位| 肚子有腹水是什么症状| 舌头两边锯齿状是什么原因| 杏花是什么生肖| 疙瘩是什么意思| 蟹爪兰什么时候开花| ml什么单位| 菊苣别名叫什么| 活检是什么意思| 植株是什么意思| 鼻干眼干口干属于什么症状| 小孩走路迟是什么原因| 海棠花长什么样| 什么是情商高| 堃是什么意思| 脚癣用什么药最好| 粉尘螨是什么东西| 什么东西好消化| 朱元璋长什么样| 头痛吃什么药最好| 正山小种属于什么茶| drg是什么意思| 西夏国是现在什么地方| 胃不舒服吃什么药好| 百合什么时候收获| pin是什么意思| 壁立千仞无欲则刚是什么意思| 拉新是什么意思| 什么是佝偻病| 锁钥是什么意思| 蓝莓有什么营养价值| 傲娇是什么意思| 天天都需要你爱是什么歌| 肠梗阻挂什么科| 女票什么意思| amo是什么意思| 梦见卖鱼是什么意思| 前列腺炎吃什么药效果好见效快| 毫米后面的单位是什么| 不甚是什么意思| 剂型是什么意思| 火华读什么| 什么叫裸眼视力| 什么花净化空气| 脚筋疼是什么原因| 什么屈膝| 吃了羊肉不能吃什么| 宫腔粘连是什么意思| bmi指数是什么| 孜然是什么| 主治医师是什么级别| 为什么不能打死飞蛾| 嘴唇为什么会干| 4.12是什么星座| 膀胱炎什么症状| 亚麻籽油是什么植物的籽榨出来的| bid是什么意思啊| 西铁城是什么档次的表| 斜纹棉是什么面料| 腹泻是什么原因引起的| 发烧感冒吃什么药| 男人吃逍遥丸治什么病| 老是犯困想睡觉是什么原因| 紫玫瑰花语是什么意思| 经常干咳嗽是什么原因| 中药什么时候喝| 为什么鼻子无缘无故流鼻血| 现在钱为什么这么难挣| 红军为什么要长征| mg什么单位| pha是什么意思| b超和阴超有什么区别| 夜来非是什么意思| 沙僧属什么生肖| crp是什么检查项目| 血常规一般查什么病| 世界第一长河是什么河| 眼白浑浊是什么原因| 省委组织部长是什么级别| 月桂酸是什么| 骨密度低吃什么药最快| 可字五行属什么| 万能受血者是什么血型| 吃什么药可以延长时间| 文员是什么| 眉毛中间长痘痘是什么原因| 餐饮sop是什么意思| 皮尔卡丹属于什么档次| 庞统和诸葛亮什么关系| 吃坏肚子吃什么药| 总胆固醇什么意思| 有是什么意思| 营救是什么意思| 金字旁土念什么字| 风花雪月什么意思| 卧推100公斤什么水平| fpd是什么意思| 为什么客厅不能放假花| 邵字五行属什么| 吃大虾不能吃什么| 鼻炎看什么科| 帝女花讲的是什么故事| 查输卵管是否堵塞要做什么检查| 垂体泌乳素是什么意思| 耳膜穿孔有什么症状| 百度Jump to content

车讯情报北汽高管大轮换:李峰去职股份,刘智

From Wikipedia, the free encyclopedia
An example for a kernel- the linear operator transforms all points on the line to the zero point , thus they form the kernel for the linear operator
百度 市政协副主席,市委组织部常务副部长、市人才办主任朱晓琳,市纪委副书记、市监委副主任周樱,市委宣传部副部长、网信办主任王德生,分别就具体工作提出明确要求。

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain.[1] That is, given a linear map L : VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W,[2] or more symbolically:

Properties

[edit]
Kernel and image of a linear map L from V to W

The kernel of L is a linear subspace of the domain V.[3][2] In the linear map two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is,

From this, it follows by the first isomorphism theorem that the image of L is isomorphic to the quotient of V by the kernel: In the case where V is finite-dimensional, this implies the rank–nullity theorem: where the term rank refers to the dimension of the image of L, while nullity refers to the dimension of the kernel of L, [4] That is, so that the rank–nullity theorem can be restated as

When V is an inner product space, the quotient can be identified with the orthogonal complement in V of . This is the generalization to linear operators of the row space, or coimage, of a matrix.

Generalization to modules

[edit]

The notion of kernel also makes sense for homomorphisms of modules, which are generalizations of vector spaces where the scalars are elements of a ring, rather than a field. The domain of the mapping is a module, with the kernel constituting a submodule. Here, the concepts of rank and nullity do not necessarily apply.

In functional analysis

[edit]

If V and W are topological vector spaces such that W is finite-dimensional, then a linear operator L: VW is continuous if and only if the kernel of L is a closed subspace of V.

Representation as matrix multiplication

[edit]

Consider a linear map represented as a m × n matrix A with coefficients in a field K (typically or ), that is operating on column vectors x with n components over K. The kernel of this linear map is the set of solutions to the equation Ax = 0, where 0 is understood as the zero vector. The dimension of the kernel of A is called the nullity of A. In set-builder notation, The matrix equation is equivalent to a homogeneous system of linear equations: Thus the kernel of A is the same as the solution set to the above homogeneous equations.

Subspace properties

[edit]

The kernel of a m × n matrix A over a field K is a linear subspace of Kn. That is, the kernel of A, the set Null(A), has the following three properties:

  1. Null(A) always contains the zero vector, since A0 = 0.
  2. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.
  3. If x ∈ Null(A) and c is a scalar cK, then cx ∈ Null(A), since A(cx) = c(Ax) = c0 = 0.

The row space of a matrix

[edit]

The product Ax can be written in terms of the dot product of vectors as follows:

Here, a1, ... , am denote the rows of the matrix A. It follows that x is in the kernel of A, if and only if x is orthogonal (or perpendicular) to each of the row vectors of A (since orthogonality is defined as having a dot product of 0).

The row space, or coimage, of a matrix A is the span of the row vectors of A. By the above reasoning, the kernel of A is the orthogonal complement to the row space. That is, a vector x lies in the kernel of A, if and only if it is perpendicular to every vector in the row space of A.

The dimension of the row space of A is called the rank of A, and the dimension of the kernel of A is called the nullity of A. These quantities are related by the rank–nullity theorem[4]

Left null space

[edit]

The left null space, or cokernel, of a matrix A consists of all column vectors x such that xTA = 0T, where T denotes the transpose of a matrix. The left null space of A is the same as the kernel of AT. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

Nonhomogeneous systems of linear equations

[edit]

The kernel also plays a role in the solution to a nonhomogeneous system of linear equations: If u and v are two possible solutions to the above equation, then Thus, the difference of any two solutions to the equation Ax = b lies in the kernel of A.

It follows that any solution to the equation Ax = b can be expressed as the sum of a fixed solution v and an arbitrary element of the kernel. That is, the solution set to the equation Ax = b is Geometrically, this says that the solution set to Ax = b is the translation of the kernel of A by the vector v. See also Fredholm alternative and flat (geometry).

Illustration

[edit]

The following is a simple illustration of the computation of the kernel of a matrix (see § Computation by Gaussian elimination, below for methods better suited to more complex calculations). The illustration also touches on the row space and its relation to the kernel.

Consider the matrix The kernel of this matrix consists of all vectors (x, y, z) ∈ R3 for which which can be expressed as a homogeneous system of linear equations involving x, y, and z:

The same linear equations can also be written in matrix form as:

Through Gauss–Jordan elimination, the matrix can be reduced to:

Rewriting the matrix in equation form yields:

The elements of the kernel can be further expressed in parametric vector form, as follows:

Since c is a free variable ranging over all real numbers, this can be expressed equally well as: The kernel of A is precisely the solution set to these equations (in this case, a line through the origin in R3). Here, the vector (?1,?26,16)T constitutes a basis of the kernel of A. The nullity of A is therefore 1, as it is spanned by a single vector.

The following dot products are zero: which illustrates that vectors in the kernel of A are orthogonal to each of the row vectors of A.

These two (linearly independent) row vectors span the row space of A—a plane orthogonal to the vector (?1,?26,16)T.

With the rank 2 of A, the nullity 1 of A, and the dimension 3 of A, we have an illustration of the rank-nullity theorem.

Examples

[edit]
  • If L: RmRn, then the kernel of L is the solution set to a homogeneous system of linear equations. As in the above illustration, if L is the operator: then the kernel of L is the set of solutions to the equations
  • Let C[0,1] denote the vector space of all continuous real-valued functions on the interval [0,1], and define L: C[0,1] → R by the rule Then the kernel of L consists of all functions fC[0,1] for which f(0.3) = 0.
  • Let C(R) be the vector space of all infinitely differentiable functions RR, and let D: C(R) → C(R) be the differentiation operator: Then the kernel of D consists of all functions in C(R) whose derivatives are zero, i.e. the set of all constant functions.
  • Let R be the direct product of infinitely many copies of R, and let s: RR be the shift operator Then the kernel of s is the one-dimensional subspace consisting of all vectors (x1, 0, 0, 0, ...).
  • If V is an inner product space and W is a subspace, the kernel of the orthogonal projection VW is the orthogonal complement to W in V.

Computation by Gaussian elimination

[edit]

A basis of the kernel of a matrix may be computed by Gaussian elimination.

For this purpose, given an m × n matrix A, we construct first the row augmented matrix where I is the n × n identity matrix.

Computing its column echelon form by Gaussian elimination (or any other suitable method), we get a matrix A basis of the kernel of A consists in the non-zero columns of C such that the corresponding column of B is a zero column.

In fact, the computation may be stopped as soon as the upper matrix is in column echelon form: the remainder of the computation consists in changing the basis of the vector space generated by the columns whose upper part is zero.

For example, suppose that Then

Putting the upper part in column echelon form by column operations on the whole matrix gives

The last three columns of B are zero columns. Therefore, the three last vectors of C, are a basis of the kernel of A.

Proof that the method computes the kernel: Since column operations correspond to post-multiplication by invertible matrices, the fact that reduces to means that there exists an invertible matrix such that with in column echelon form. Thus , , and . A column vector belongs to the kernel of (that is ) if and only if where . As is in column echelon form, , if and only if the nonzero entries of correspond to the zero columns of . By multiplying by , one may deduce that this is the case if and only if is a linear combination of the corresponding columns of .

Numerical computation

[edit]

The problem of computing the kernel on a computer depends on the nature of the coefficients.

Exact coefficients

[edit]

If the coefficients of the matrix are exactly given numbers, the column echelon form of the matrix may be computed with Bareiss algorithm more efficiently than with Gaussian elimination. It is even more efficient to use modular arithmetic and Chinese remainder theorem, which reduces the problem to several similar ones over finite fields (this avoids the overhead induced by the non-linearity of the computational complexity of integer multiplication).[citation needed]

For coefficients in a finite field, Gaussian elimination works well, but for the large matrices that occur in cryptography and Gr?bner basis computation, better algorithms are known, which have roughly the same computational complexity, but are faster and behave better with modern computer hardware.[citation needed]

Floating point computation

[edit]

For matrices whose entries are floating-point numbers, the problem of computing the kernel makes sense only for matrices such that the number of rows is equal to their rank: because of the rounding errors, a floating-point matrix has almost always a full rank, even when it is an approximation of a matrix of a much smaller rank. Even for a full-rank matrix, it is possible to compute its kernel only if it is well conditioned, i.e. it has a low condition number.[5][citation needed]

Even for a well conditioned full rank matrix, Gaussian elimination does not behave correctly: it introduces rounding errors that are too large for getting a significant result. As the computation of the kernel of a matrix is a special instance of solving a homogeneous system of linear equations, the kernel may be computed with any of the various algorithms designed to solve homogeneous systems. A state of the art software for this purpose is the Lapack library.[citation needed]

See also

[edit]

Notes and references

[edit]
  1. ^ Weisstein, Eric W. "Kernel". mathworld.wolfram.com. Retrieved 2025-08-06.
  2. ^ a b "Kernel (Nullspace) | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2025-08-06.
  3. ^ Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in Lay 2005, Meyer 2001, and Strang's lectures.
  4. ^ a b Weisstein, Eric W. "Rank-Nullity Theorem". mathworld.wolfram.com. Retrieved 2025-08-06.
  5. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.{{cite web}}: CS1 maint: archived copy as title (link)

Bibliography

[edit]
[edit]
白酒兑什么饮料最好喝 彩照是什么底色 polo是什么意思 u18什么意思 血糖高吃什么能降糖
子宫内膜增厚是什么原因引起的 胆水是什么 主动脉壁钙化是什么意思 12年义务教育什么时候实行 狗下崽前有什么征兆
诸事皆宜是什么意思 什么是慢性病 细思极恐是什么意思 直言不讳是什么意思 hpv感染用什么药
三月初一是什么星座 眩晕症吃什么药 跟腱断裂是什么感觉 吃什么能安神助睡眠 10月15号是什么星座
什么叫脑白质病变hcv8jop4ns8r.cn 胃窦隆起是什么意思hcv9jop5ns1r.cn 六月二号什么星座xianpinbao.com 荠菜长什么样子图片hcv9jop0ns1r.cn 照烧是什么意思hcv7jop5ns1r.cn
吃了什么药不能喝酒hcv7jop9ns6r.cn 脑梗做什么检查最准确hcv9jop2ns1r.cn 14年属什么hcv8jop4ns7r.cn 遍布是什么意思hcv9jop4ns9r.cn 来加贝念什么beikeqingting.com
人活着意义是什么dayuxmw.com 胃肠炎吃什么药好520myf.com 九牛一毛什么意思hcv8jop8ns3r.cn 冬的部首是什么hcv7jop9ns2r.cn 大便不成形吃什么食物好luyiluode.com
舅舅的女儿叫什么hcv7jop7ns3r.cn 牙痛吃什么药hcv8jop6ns3r.cn oct试验是什么hcv8jop5ns4r.cn 12月2号什么星座sanhestory.com 海之蓝是什么香型hcv8jop5ns5r.cn
百度