班草是什么意思| 维生素b吃多了有什么副作用| 女贞子是什么| 桑叶泡水喝有什么功效和作用| 胃挂什么科| 恰如其分是什么意思| 为什么有的人招蚊子| 口炎是什么字| 四个火念什么| 金针菇为什么不能消化| 锁骨是什么骨| 犹太人有什么特征| 虫草有什么作用与功效| 农历七月初五是什么星座| 西芹和芹菜有什么区别| 筋膜炎用什么药| 审时度势是什么意思| 冬季吃什么| 社保基金是什么| blackpink什么意思| 难耐是什么意思| 取卵后需要注意什么| 啤酒加鸡蛋有什么功效| 非洲人一日三餐吃什么| 血热是什么症状| 肺活量是什么意思| peb是什么意思| 肝火旺盛吃什么药好| 冲奶粉用什么水比较好| ace是什么意思| 什么是低血糖| 感冒头痛吃什么药| 红糖水什么时候喝| 前胸后背疼是什么原因| sassy是什么意思| 怀孕两个月有什么症状| 肛门裂口是用什么药膏| 咳嗽有白痰一直不好是什么原因| magnesium是什么意思| 眼花缭乱什么意思| 猫能看到什么颜色| 嘴唇周围长痘痘是什么原因| 男士私处瘙痒用什么药| 全身发抖是什么原因| 什么样的人值得爱| 人为什么会放屁| 子不问卜自惹祸殃什么意思| 戊午五行属什么| 焦虑症吃什么药最好| 小鹦鹉吃什么食物| 周岁和虚岁是什么意思| glu是什么意思| 膝盖积水是什么原因造成的| 桃是什么生肖| 牙龈疼吃什么药| 幼儿贫血吃什么补血最快| 宫颈纳氏囊肿是什么意思| 保肝降酶药首选什么药| 福建有什么好吃的| 袖珍人是什么意思| 围绝经期吃什么药调理| 半夜喉咙痒咳嗽是什么原因| 肠胃炎发烧吃什么药| sherpa是什么面料| fu什么意思| 花开半夏是什么意思| 吃什么补黄体酮最快| abo是什么意思| 舌下含服是什么意思| 小浣熊吃什么| 四季春茶属于什么茶| 什么然| 秦始皇为什么焚书坑儒| 优越感是什么意思| 少量盆腔积液是什么意思| 女人山根低代表什么| 药学专业是干什么的| 世界上最坚硬的东西是什么| 2027年属什么生肖| boq是什么意思| 女性尿道感染吃什么药| 属蛇的和什么属相最配| 妈祖是什么意思| 为什么十个络腮九个帅| 疖子是什么| 有什么好吃的家常菜| 精不液化是什么原因导致的| mido手表什么牌子| 脸皮最厚是什么生肖| 梦见水里有蛇是什么意思| hbsag是什么意思| 什么安全套好用| 樱桃有什么营养| 吃什么水果可以降火| 什么是大三阳和小三阳| 龟头炎看什么科| molly是什么意思| 六月十五号是什么星座| 521什么星座| 应景是什么意思| 黑眼圈看什么科| 颈动脉斑块看什么科| 白细胞减少是什么原因| 铁锈红配什么颜色好看| 石榴花是什么季节开的| 羊水少了对宝宝有什么影响| 飞机杯是什么感觉| 指甲长出来是白色的什么原因| ph值什么意思| 夏天吃什么蔬菜好| 睡眠障碍是什么原因引起的| 狸猫换太子什么意思| 慢性扁桃体炎吃什么药| 鸡汤放什么调料| 撰文是什么意思| 松鼠吃什么食物| 怀孕吃什么好| 肠胀气吃什么药| 蛔虫是什么意思| ac代表什么意思| 小脑梗塞会出现什么症状| 舌头上火了吃什么降火| 什么好像什么一样| 含什么什么苦| 继女是什么意思| 便秘吃什么药没有依赖性| 女生排卵期在什么时候| 治白内障用什么药最好| 佬是什么意思| 艾滋病阳性是什么意思| 什么是主动脉夹层| 为什么女人阴唇会变大| 鼻子出油多是什么原因| 凝血常规是查什么的| 治霉菌性阴炎用什么药好得快| 高兴的动物是什么生肖| 夏天吃羊肉有什么好处| 德育是什么| 刮宫是什么意思| 2002是什么年| 囊内可见卵黄囊是什么意思| rinnai是什么品牌| 月经稀发是什么意思| 眼睛模糊流泪用什么药| b超是检查什么的| 胃造影和胃镜有什么区别| 医院规培是什么意思| 吃核桃有什么好处和坏处| 月亮星座是什么意思| 什么叫通分| 中国民间为什么要吃腊八粥| mixblu是什么牌子| pa环是什么| 艮是什么意思| 3月12号是什么星座| 醋酸是什么东西| 缺钙有什么症状| 成人男性尿床是什么原因造成的| 尿量变少是什么原因| 什么的水洼| 单核细胞偏高是什么原因| 开平方是什么意思| 亲吻是什么感觉| 苋菜与什么食物相克| 婴儿奶粉过敏有什么症状| 什么什么挺立| 七月八号是什么日子| 长白头发了吃什么才能把头发变黑| 电磁炉上可以放什么锅| kids是什么牌子| 鼠妇吃什么| 打点滴是什么意思| 什么是盆腔炎| 相火是什么意思| ns是什么单位| 什么时间英文| 不昧因果是什么意思| 司令是什么意思| 性腺六项是查什么的| 做梦梦见大蟒蛇什么意思| 美国为什么有两块土地| 食管反流用什么药| 食管在什么位置图片| 什么是三界五行| 属羊的是什么命| 魈是什么意思| 喉咙嘶哑吃什么药| 美丽的近义词是什么| 月经提前了10天是什么原因| 眉毛上长痘是什么原因| 缺铁吃什么补得最快| 脑供血不足用什么药| 东吴是现在的什么地方| 睾酮素低了有什么症状| 脖子左侧疼是什么原因| 指甲凹陷是什么原因| 痛风吃什么药效果好| 丙氨酸氨基转移酶高是什么意思| 嘴干嘴苦是什么原因| 宫内暗区是什么意思| 电头是什么| 天下乌鸦一般黑是什么意思| 百折不挠的意思是什么| 吃什么能增强免疫力和抵抗力| 乙肝五项245阳性是什么意思| 变应原皮内试验是测什么的| 姜薯是什么| 有眼不识泰山是什么意思| 珍珠鸟吃什么| 小孩坐火车需要什么证件| 颈椎病引起的头晕吃什么药| 北京豆汁什么味道| 补钙吃什么食物| 鹿茸有什么作用| shake是什么意思| 漱口水有什么作用| 上善若水下一句是什么| 男生属鸡和什么属相配| 怕热是什么原因| 喝黄芪水有什么好处| 植物纤维是什么面料| 倒反天罡是什么意思| 此什么非彼什么的意思| 心脏早搏有什么危害| 弯是什么意思| osprey是什么牌子| 薄荷有什么功效| 梦见牙齿掉了什么意思| 赟读什么| 红眼病不能吃什么东西| 打了麻药有什么副作用| 腿弯处的筋痛是什么原因| 100元人民币什么时候发行的| 淡盐水是什么水| 朝野是什么意思| 人流后什么时候来月经| 为什么不敢挖雍正陵墓| 相伴是什么意思| 新疆人为什么不吃猪肉| 飞蛾飞进家里预示什么| 升血压吃什么药| 月字旁的有什么字| 优柔寡断是什么意思| 企鹅代表什么生肖| 做nt挂什么科| 肺部结节是什么引起的| e大饼是什么牌子| 撕票是什么意思| 疑心病是什么意思| 家乡是什么意思| 天德是什么意思| 爸爸过生日送什么礼物| 孕妇为什么会水肿| 裸官是什么意思| 一个彭一个瓦念什么| 甲状腺结节有什么感觉| 3月份出生是什么星座| 局气是什么意思| 为什么会突然得荨麻疹| 为什么抽烟就想拉屎| 临床什么意思| 针对是什么意思| 亚麻籽有什么功效| 眼前的苟且是什么意思| 百度Jump to content

吉格斯为贝尔破进球纪录高兴能与里皮过招深感荣幸

From Wikipedia, the free encyclopedia
百度 科学技术部对外保留国家外国专家局牌子。

In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices.[1][2]

Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.[3][2] For example, the 3x4 matrix presented below is divided by horizontal and vertical lines into four blocks: the top-left 2x3 block, the top-right 2x1 block, the bottom-left 1x3 block, and the bottom-right 1x1 block.

Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned.

This notion can be made more precise for an by matrix by partitioning into a collection , and then partitioning into a collection . The original matrix is then considered as the "total" of these groups, in the sense that the entry of the original matrix corresponds in a 1-to-1 way with some offset entry of some , where and .[4]

Block matrix algebra arises in general from biproducts in categories of matrices.[5]

A 168×168 element block matrix with 12×12, 12×24, 24×12, and 24×24 sub-matrices. Non-zero elements are in blue, zero elements are grayed.

Example

[edit]

The matrix

can be visualized as divided into four blocks, as

.

The horizontal and vertical lines have no special mathematical meaning,[6][7] but are a common way to visualize a partition.[6][7] By this partition, is partitioned into four 2×2 blocks, as

The partitioned matrix can then be written as

[8]

Formal definition

[edit]

Let . A partitioning of is a representation of in the form

,

where are contiguous submatrices, , and .[9] The elements of the partition are called blocks.[9]

By this definition, the blocks in any one column must all have the same number of columns.[9] Similarly, the blocks in any one row must have the same number of rows.[9]

Partitioning methods

[edit]

A matrix can be partitioned in many ways.[9] For example, a matrix is said to be partitioned by columns if it is written as

,

where is the th column of .[9] A matrix can also be partitioned by rows:

,

where is the th row of .[9]

Common partitions

[edit]

Often,[9] we encounter the 2x2 partition

,[9]

particularly in the form where is a scalar:

.[9]

Block matrix operations

[edit]

Transpose

[edit]

Let

where . (This matrix will be reused in § Addition and § Multiplication.) Then its transpose is

,[9][10]

and the same equation holds with the transpose replaced by the conjugate transpose.[9]

Block transpose

[edit]

A special form of matrix transpose can also be defined for block matrices, where individual blocks are reordered but not transposed. Let be a block matrix with blocks , the block transpose of is the block matrix with blocks .[11] As with the conventional trace operator, the block transpose is a linear mapping such that .[10] However, in general the property does not hold unless the blocks of and commute.

Addition

[edit]

Let

,

where , and let be the matrix defined in § Transpose. (This matrix will be reused in § Multiplication.) Then if , , , and , then

.[9]

Multiplication

[edit]

It is possible to use a block partitioned matrix product that involves only algebra on submatrices of the factors. The partitioning of the factors is not arbitrary, however, and requires "conformable partitions"[12] between two matrices and such that all submatrix products that will be used are defined.[13]

Two matrices and are said to be partitioned conformally for the product , when and are partitioned into submatrices and if the multiplication is carried out treating the submatrices as if they are scalars, but keeping the order, and when all products and sums of submatrices involved are defined.

—?Arak M. Mathai and Hans J. Haubold, Linear Algebra: A Course for Physicists and Engineers[14]

Let be the matrix defined in § Transpose, and let be the matrix defined in § Addition. Then the matrix product

can be performed blockwise, yielding as an matrix. The matrices in the resulting matrix are calculated by multiplying:

[6]

Or, using the Einstein notation that implicitly sums over repeated indices:

Depicting as a matrix, we have

.[9]

Inversion

[edit]

If a matrix is partitioned into four blocks, it can be inverted blockwise as follows:

where A and D are square blocks of arbitrary size, and B and C are conformable with them for partitioning. Furthermore, A and the Schur complement of A in P: P/A = D ? CA?1B must be invertible.[15]

Equivalently, by permuting the blocks:

[16]

Here, D and the Schur complement of D in P: P/D = A ? BD?1C must be invertible.

If A and D are both invertible, then:

By the Weinstein–Aronszajn identity, one of the two matrices in the block-diagonal matrix is invertible exactly when the other is.

Computing submatrix inverses from the full inverse

[edit]

By the symmetry between a matrix and its inverse in the block inversion formula, if a matrix P and its inverse P?1 are partitioned conformally:

then the inverse of any principal submatrix can be computed from the corresponding blocks of P?1:

This relationship follows from recognizing that E?1 = A ? BD?1C (the Schur complement), and applying the same block inversion formula with the roles of P and P?1 reversed.[17] [18]

Determinant

[edit]

The formula for the determinant of a -matrix above continues to hold, under appropriate further assumptions, for a matrix composed of four submatrices with and square. The easiest such formula, which can be proven using either the Leibniz formula or a factorization involving the Schur complement, is

[16]

Using this formula, we can derive that characteristic polynomials of and are same and equal to the product of characteristic polynomials of and . Furthermore, If or is diagonalizable, then and are diagonalizable too. The converse is false; simply check .

If is invertible, one has

[16]

and if is invertible, one has

[19][16]

If the blocks are square matrices of the same size further formulas hold. For example, if and commute (i.e., ), then

[20]

Similar statements hold when , , or ??. Namely, if , then

Note the change in order of and (we have instead of ). Similarly, if , then should be replaced with (i.e. we get ) and if , then we should have . Note for the last two results, you have to use commutativity of the underlying ring, but not for the first two.

This formula has been generalized to matrices composed of more than blocks, again under appropriate commutativity conditions among the individual blocks.[21]

For and , the following formula holds (even if and do not commute)

[16]

Special types of block matrices

[edit]

Direct sums and block diagonal matrices

[edit]

Direct sum

[edit]

For any arbitrary matrices A (of size m × n) and B (of size p × q), we have the direct sum of A and B, denoted by A  B and defined as

[10]

For instance,

This operation generalizes naturally to arbitrary dimensioned arrays (provided that A and B have the same number of dimensions).

Note that any element in the direct sum of two vector spaces of matrices could be represented as a direct sum of two matrices.

Block diagonal matrices

[edit]

A block diagonal matrix is a block matrix that is a square matrix such that the main-diagonal blocks are square matrices and all off-diagonal blocks are zero matrices.[16] That is, a block diagonal matrix A has the form

where Ak is a square matrix for all k = 1, ..., n. In other words, matrix A is the direct sum of A1, ..., An.[16] It can also be indicated as A1 ⊕ A2 ⊕ ... ⊕ An[10] or diag(A1, A2, ..., An)[10] (the latter being the same formalism used for a diagonal matrix). Any square matrix can trivially be considered a block diagonal matrix with only one block.

For the determinant and trace, the following properties hold:

[22][23] and
[16][23]

A block diagonal matrix is invertible if and only if each of its main-diagonal blocks are invertible, and in this case its inverse is another block diagonal matrix given by

[24]

The eigenvalues[25] and eigenvectors of are simply those of the s combined.[23]

Block tridiagonal matrices

[edit]

A block tridiagonal matrix is another special block matrix, which is just like the block diagonal matrix a square matrix, having square matrices (blocks) in the lower diagonal, main diagonal and upper diagonal, with all other blocks being zero matrices. It is essentially a tridiagonal matrix but has submatrices in places of scalars. A block tridiagonal matrix has the form

where , and are square sub-matrices of the lower, main and upper diagonal respectively.[26][27]

Block tridiagonal matrices are often encountered in numerical solutions of engineering problems (e.g., computational fluid dynamics). Optimized numerical methods for LU factorization are available[28] and hence efficient solution algorithms for equation systems with a block tridiagonal matrix as coefficient matrix. The Thomas algorithm, used for efficient solution of equation systems involving a tridiagonal matrix can also be applied using matrix operations to block tridiagonal matrices (see also Block LU decomposition).

Block triangular matrices

[edit]

Upper block triangular

[edit]

A matrix is upper block triangular (or block upper triangular[29]) if

,

where for all .[25][29]

Lower block triangular

[edit]

A matrix is lower block triangular if

,

where for all .[25]

Block Toeplitz matrices

[edit]

A block Toeplitz matrix is another special block matrix, which contains blocks that are repeated down the diagonals of the matrix, as a Toeplitz matrix has elements repeated down the diagonal.

A matrix is block Toeplitz if for all , that is,

,

where .[25]

Block Hankel matrices

[edit]

A matrix is block Hankel if for all , that is,

,

where .[25]

See also

[edit]
  • Kronecker product (matrix direct product resulting in a block matrix)
  • Jordan normal form (canonical form of a linear operator on a finite-dimensional complex vector space)
  • Strassen algorithm (algorithm for matrix multiplication that is faster than the conventional matrix multiplication algorithm)

Notes

[edit]
  1. ^ Eves, Howard (1980). Elementary Matrix Theory (reprint ed.). New York: Dover. p. 37. ISBN 0-486-63946-0. Retrieved 24 April 2013. We shall find that it is sometimes convenient to subdivide a matrix into rectangular blocks of elements. This leads us to consider so-called partitioned, or block, matrices.
  2. ^ a b Dobrushkin, Vladimir. "Partition Matrices". Linear Algebra with Mathematica. Retrieved 2025-08-06.
  3. ^ Anton, Howard (1994). Elementary Linear Algebra (7th ed.). New York: John Wiley. p. 30. ISBN 0-471-58742-7. A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal and vertical rules between selected rows and columns.
  4. ^ Indhumathi, D.; Sarala, S. (2025-08-06). "Fragment Analysis and Test Case Generation using F-Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing" (PDF). International Journal of Computer Applications. 93 (6): 13. Bibcode:2014IJCA...93f..11I. doi:10.5120/16218-5662.
  5. ^ Macedo, H.D.; Oliveira, J.N. (2013). "Typing linear algebra: A biproduct-oriented approach". Science of Computer Programming. 78 (11): 2160–2191. arXiv:1312.4818. doi:10.1016/j.scico.2012.07.012.
  6. ^ a b c Johnston, Nathaniel (2021). Introduction to linear and matrix algebra. Cham, Switzerland: Springer Nature. pp. 30, 425. ISBN 978-3-030-52811-9.
  7. ^ a b Johnston, Nathaniel (2021). Advanced linear and matrix algebra. Cham, Switzerland: Springer Nature. p. 298. ISBN 978-3-030-52814-0.
  8. ^ Jeffrey, Alan (2010). Matrix operations for engineers and scientists: an essential guide in linear algebra. Dordrecht [Netherlands] ; New York: Springer. p. 54. ISBN 978-90-481-9273-1. OCLC 639165077.
  9. ^ a b c d e f g h i j k l m n Stewart, Gilbert W. (1998). Matrix algorithms. 1: Basic decompositions. Philadelphia, PA: Soc. for Industrial and Applied Mathematics. pp. 18–20. ISBN 978-0-89871-414-2.
  10. ^ a b c d e Gentle, James E. (2007). Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer Texts in Statistics. New York, NY: Springer New York Springer e-books. pp. 47, 487. ISBN 978-0-387-70873-7.
  11. ^ Mackey, D. Steven (2006). Structured linearizations for matrix polynomials (PDF) (Thesis). University of Manchester. ISSN 1749-9097. OCLC 930686781.
  12. ^ Eves, Howard (1980). Elementary Matrix Theory (reprint ed.). New York: Dover. p. 37. ISBN 0-486-63946-0. Retrieved 24 April 2013. A partitioning as in Theorem 1.9.4 is called a conformable partition of A and B.
  13. ^ Anton, Howard (1994). Elementary Linear Algebra (7th ed.). New York: John Wiley. p. 36. ISBN 0-471-58742-7. ...provided the sizes of the submatrices of A and B are such that the indicated operations can be performed.
  14. ^ Mathai, Arakaparampil M.; Haubold, Hans J. (2017). Linear Algebra: a course for physicists and engineers. De Gruyter textbook. Berlin Boston: De Gruyter. p. 162. ISBN 978-3-11-056259-0.
  15. ^ Bernstein, Dennis (2005). Matrix Mathematics. Princeton University Press. p. 44. ISBN 0-691-11802-7.
  16. ^ a b c d e f g h Abadir, Karim M.; Magnus, Jan R. (2005). Matrix Algebra. Cambridge University Press. pp. 97, 100, 106, 111, 114, 118. ISBN 9781139443647.
  17. ^ "Is this formula for a matrix block inverse in terms of the entire matrix inverse known?". MathOverflow.
  18. ^ Escalante-B., Alberto N.; Wiskott, Laurenz (2016). "Improved graph-based SFA: Information preservation complements the slowness principle". Machine Learning. arXiv:1412.4679. doi:10.1007/s10994-016-5563-y.
  19. ^ Taboga, Marco (2021). "Determinant of a block matrix", Lectures on matrix algebra.
  20. ^ Silvester, J. R. (2000). "Determinants of Block Matrices" (PDF). Math. Gaz. 84 (501): 460–467. doi:10.2307/3620776. JSTOR 3620776. Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.
  21. ^ Sothanaphan, Nat (January 2017). "Determinants of block matrices with noncommuting blocks". Linear Algebra and Its Applications. 512: 202–218. arXiv:1805.06027. doi:10.1016/j.laa.2016.10.004. S2CID 119272194.
  22. ^ Quarteroni, Alfio; Sacco, Riccardo; Saleri, Fausto (2000). Numerical mathematics. Texts in applied mathematics. New York: Springer. pp. 10, 13. ISBN 978-0-387-98959-4.
  23. ^ a b c George, Raju K.; Ajayakumar, Abhijith (2024). "A Course in Linear Algebra". University Texts in the Mathematical Sciences: 35, 407. doi:10.1007/978-981-99-8680-4. ISBN 978-981-99-8679-8. ISSN 2731-9318.
  24. ^ Prince, Simon J. D. (2012). Computer vision: models, learning, and inference. New York: Cambridge university press. p. 531. ISBN 978-1-107-01179-3.
  25. ^ a b c d e Bernstein, Dennis S. (2009). Matrix mathematics: theory, facts, and formulas (2 ed.). Princeton, NJ: Princeton University Press. pp. 168, 298. ISBN 978-0-691-14039-1.
  26. ^ Dietl, Guido K. E. (2007). Linear estimation and detection in Krylov subspaces. Foundations in signal processing, communications and networking. Berlin ; New York: Springer. pp. 85, 87. ISBN 978-3-540-68478-7. OCLC 85898525.
  27. ^ Horn, Roger A.; Johnson, Charles R. (2017). Matrix analysis (Second edition, corrected reprint ed.). New York, NY: Cambridge University Press. p. 36. ISBN 978-0-521-83940-2.
  28. ^ Datta, Biswa Nath (2010). Numerical linear algebra and applications (2 ed.). Philadelphia, Pa: SIAM. p. 168. ISBN 978-0-89871-685-6.
  29. ^ a b Stewart, Gilbert W. (2001). Matrix algorithms. 2: Eigensystems. Philadelphia, Pa: Soc. for Industrial and Applied Mathematics. p. 5. ISBN 978-0-89871-503-3.

References

[edit]
鼻塞黄鼻涕吃什么药 老年人吃什么 dia是什么意思 鹦鹉吃什么水果 感冒吃什么食物
龙跟什么生肖最配 为什么会手麻 湿气是什么原因造成的 人几读什么 睡觉手发麻是什么原因
什么东西倒立后会增加一半 舌头挂什么科 流浓黄鼻涕是什么原因 号是什么 血红蛋白偏低的原因和危害是什么
不负卿是什么意思 睡眠质量不好挂什么科 暑假什么时候结束 重庆的市花是什么 ab型血和b型血的孩子是什么血型
咳嗽吃什么菜好hcv9jop1ns4r.cn 宫颈肥大是什么原因造成的hcv8jop0ns7r.cn 有什么办法可以怀孕hcv8jop4ns9r.cn 4月6号什么星座hcv9jop6ns3r.cn 流理台是什么hcv9jop6ns6r.cn
己卯日五行属什么hcv8jop6ns5r.cn 胃溃疡是什么意思hcv9jop0ns0r.cn 聊是什么意思hcv9jop1ns8r.cn 林格液又叫什么beikeqingting.com 什么是星座mmeoe.com
钙是什么hcv8jop6ns1r.cn 宝宝是什么意思hcv8jop1ns2r.cn 萎谢是什么意思hcv8jop8ns3r.cn 脐动脉2条是什么意思hcv9jop7ns1r.cn 忽必烈和成吉思汗是什么关系hcv8jop3ns8r.cn
左眼跳什么hcv9jop7ns0r.cn 半熟芝士是什么意思jinxinzhichuang.com 真身是什么意思hcv8jop5ns1r.cn 银杏叶提取物治什么病hcv7jop7ns2r.cn 夏至吃什么传统美食hcv9jop2ns9r.cn
百度