五一年属什么生肖| 6月14号是什么星座| 窥视是什么意思| 阴道炎用什么洗液| 7月17日什么星座| 5.3什么星座| 谏什么意思| 吃完紧急避孕药不能吃什么| 麦芽糖是什么做的| 膝盖发软无力是什么原因| 山葵是什么| 舌苔发黑是什么原因| 十二指肠球部溃疡a1期是什么意思| 融字五行属什么| 举足轻重是什么生肖| 肺结节吃什么药| 海参什么样的好| nmol是什么单位| 心电图是什么| 杜甫的号是什么| 穿刺是检查什么的| 木有什么意思| 换手率高说明什么| 久经沙场是什么意思| 美国为什么叫美国| 肛肠科属于什么科| 狮子的天敌是什么动物| 9.10是什么星座| 花干是什么做的| 为什么长痣越来越多了| 金牛男和什么星座女最配| 为什么空腹血糖比餐后血糖高| 晨咳是什么原因引起的| 眼睛的晶体是什么| 性功能障碍挂什么科| 为什么会得干眼症| lst是什么意思| 什么叫尿毒症| 梦到头发白了是什么意思| 情人果是什么| 身上肉疼是什么原因| 偏执什么意思| 什么东西含铅量高| 气加山念什么| 阴道有异味买什么药| 列席是什么意思| 乳腺无回声结节是什么意思| 两个子是什么字| 喝酒上头是什么原因| 高三吃什么补脑抗疲劳| 查激素六项挂什么科| 经常吃辣椒有什么好处和坏处| 梦魇是什么意思| 猪胰是什么东西| 扁桃体发炎看什么科| 超霸是什么意思| 冰箱买什么牌子好| 残疾证有什么好处| 丝棉是什么材料| 肚脐周围痛挂什么科| 男人梦到掉牙什么预兆| 泡打粉可以用什么代替| 欧米茄算什么档次| 严重失眠有什么方法| 右手发麻是什么病的前兆| 肺结核是什么| 奴仆宫是什么意思| 干贝和瑶柱有什么区别| 有什么症状是肯定没怀孕| 身首异处是什么意思| 喝什么酒对身体好| 油性皮肤适合用什么牌子的护肤品| 精尽人亡是什么意思| 春风十里不如你什么意思| 寮房是什么意思| 三月24号是什么星座的| 八一年属什么生肖| 什么原因导致脱发| 胃溃疡a2期是什么意思| 遂什么意思| 糜烂性胃炎吃什么药好| 化生是什么意思| 什么水果营养价值最高| 龟吃什么| 水泡型脚气用什么药好| 夫妻分床睡意味着什么| 第一次坐飞机注意什么| 血小板偏低是什么意思| 沈阳有什么大学| 欲购从速什么意思| 外阴瘙痒什么原因引起| 家有喜事指什么生肖| 哈气是什么意思| 马加其念什么| 盗墓笔记的结局是什么| 臻字的意思是什么| 脑癌是什么原因引起的| 丹田是什么意思| 秀恩爱是什么意思| 滥竽充数的充是什么意思| 唯有读书高的前一句是什么| 姑娘是什么意思| 农历十月是什么星座| 猪身上红疙瘩用什么药| 晒太阳对身体有什么好处| 屁股上有痣代表什么| 去草原穿什么衣服拍照好看| 颈椎用什么字母表示| 宝子是什么意思| 5月14日是什么星座| 降钙素原是什么意思| 光绪帝叫什么名字| 同房出血要做什么检查| 远在天边近在眼前是什么意思| 什么叫免疫治疗| 去极化是什么意思| notice是什么意思| 滴水不漏什么意思| 习字五行属什么| 痛风石是什么| 粘胶纤维是什么面料| 白内障是什么引起的| 手足口病咳嗽吃什么药| 尼可刹米别名叫什么| 奕什么意思| 老虎拉车的歇后语是什么| 彩超跟b超有什么区别| 83年五行属什么| 渝北区有什么好玩的地方| 什么样的人容易孕酮低| 吃什么水果可以护肝| 茭白不能和什么一起吃| 八字中的印是什么意思| 梦见搬家是什么意思| 母亲节在什么时候| 鲁是什么意思| 文气是什么意思| 副脾是什么意思| 挑灯夜战是什么意思| 呃逆什么意思| 千什么万| 上火是什么症状| cut什么意思| 麻婆豆腐是什么菜系| 扬代表什么生肖| 金银花不能和什么一起吃| 柠檬片泡水喝有什么功效和作用| 焗油和染发有什么区别| 卢沟桥事变又称什么| 伤口愈合为什么会痒| 尿道炎吃什么药好得快| 面粉和淀粉有什么区别| 埃及法老是什么意思| 为什么会有鼻炎| 肚脐眼周围痛什么原因| 乳腺瘤是什么引起的| 孕妇吐得厉害有什么办法解决| 预防脑出血吃什么药| 南瓜子不能和什么一起吃| 芒果和什么不能一起吃| 打喷嚏流清鼻涕吃什么药| 减肥晚上吃什么比较好| 11月份是什么季节| 闭口是什么| 夏至要吃什么| 长期失眠应该吃什么药| 6月30日是什么日子| 手麻疼是什么原因引起| 维生素什么时候吃效果最好| 三维彩超主要检查什么| 蜈蚣最怕什么东西| 草字头加西读什么| 2020是什么年| 小孩小腿疼是什么原因引起的| 什么样的智齿不需要拔| pas什么意思| 嗓子哑是什么原因| 年上是什么意思| 紫茉莉什么时候开花| 数脉是什么意思| 4ever是什么意思| 4月20号是什么星座| 佳人是什么生肖| aimer是什么意思| 发烧感冒吃什么药| 老放屁吃什么药| 糖尿病适合吃什么水果| 胎盘老化是什么原因造成的| 肌张力高有什么症状| 二姨子是什么意思| 天蓝色配什么颜色| 小孩脸上有白斑是什么原因| 今天开什么码| 晚上吃什么水果对身体好| 肝功能2项是指什么| 九四年属什么生肖| 为什么老是梦到男朋友| 打耳洞什么季节最好| 胃溃疡吃什么水果好| 3月是什么星座| 梦见龙卷风是什么预兆| 芭乐是什么水果| 红烧肉是什么菜系| 经期血量少是什么原因| 酸奶什么时候喝好| 桃花是指什么生肖| 治疗hpv病毒用什么药| 手发抖是什么原因引起的年轻人| 凤凰是什么| 美尼尔眩晕症吃什么药| 公元前3000年是什么朝代| 巴基斯坦用什么语言| 激素脸是什么样子| ky是什么意思| 大禹的爸爸叫什么| 耳垂长痘痘是什么原因| 震颤是什么病| 蜂蜜跟什么不能一起吃| 日是什么意思| 除日是什么意思| 转氨酶偏高有什么症状| 本帮菜是什么意思| 女人为什么比男人长寿| 肚脐左侧疼是什么原因| 什么洗面奶最好用排行第一| 大头虾是什么意思| 蛋蛋冰凉潮湿什么原因| 兽性大发是什么生肖| 心脏跳的快是什么原因| 参乌健脑胶囊适合什么人吃| 酱油是什么做的| 内蒙有什么特产| 蒲公英什么功效| 鱼腥味是什么妇科病| 放荡不羁爱自由什么意思| 艮五行属什么| 艮宫代表什么| 什么是虚汗| 左什么右什么| 排场是什么意思| 身份证有x代表什么| 什么是岩茶| 一什么雪| 吃避孕药对身体有什么影响| 男性夜间盗汗什么原因| 属相牛和什么属相配| dq什么意思| 宫颈锥切后需要注意什么| 费心是什么意思| 性功能下降吃什么药好| 生理期吃什么水果比较好| 属狗什么命| 丙三醇是什么东西| 胃窦炎是什么症状| 太平公主叫什么名字| 蕾字五行属什么| 圆形脸适合什么样的发型| 心脏供血不足是什么原因引起的| longines是什么牌子| 朱红色是什么颜色| 手背肿胀是什么原因| 肾素活性高是什么原因| 孕期脸上长痘痘是什么原因| 什么是舍利| 百度Jump to content

一路顺风是什么生肖

From Wikipedia, the free encyclopedia
百度 [责任编辑:李澍]

In the field of machine learning and specifically the problem of statistical classification, a confusion matrix, also known as error matrix,[1] is a specific table layout that allows visualization of the performance of an algorithm, typically a supervised learning one; in unsupervised learning it is usually called a matching matrix.

Each row of the matrix represents the instances in an actual class while each column represents the instances in a predicted class, or vice versa – both variants are found in the literature.[2] The diagonal of the matrix therefore represents all instances that are correctly predicted.[3] The name stems from the fact that it makes it easy to see whether the system is confusing two classes (i.e. commonly mislabeling one as another).

It is a special kind of contingency table, with two dimensions ("actual" and "predicted"), and identical sets of "classes" in both dimensions (each combination of dimension and class is a variable in the contingency table).

Example

[edit]

Given a sample of 12 individuals, 8 that have been diagnosed with cancer and 4 that are cancer-free, where individuals with cancer belong to class 1 (positive) and non-cancer individuals belong to class 0 (negative), we can display that data as follows:

Individual number 1 2 3 4 5 6 7 8 9 10 11 12
Actual classification 1 1 1 1 1 1 1 1 0 0 0 0

Assume that we have a classifier that distinguishes between individuals with and without cancer in some way, we can take the 12 individuals and run them through the classifier. The classifier then makes 9 accurate predictions and misses 3: 2 individuals with cancer wrongly predicted as being cancer-free (sample 1 and 2), and 1 person without cancer that is wrongly predicted to have cancer (sample 9).

Individual number 1 2 3 4 5 6 7 8 9 10 11 12
Actual classification 1 1 1 1 1 1 1 1 0 0 0 0
Predicted classification 0 0 1 1 1 1 1 1 1 0 0 0

Notice, that if we compare the actual classification set to the predicted classification set, there are 4 different outcomes that could result in any particular column. One, if the actual classification is positive and the predicted classification is positive (1,1), this is called a true positive result because the positive sample was correctly identified by the classifier. Two, if the actual classification is positive and the predicted classification is negative (1,0), this is called a false negative result because the positive sample is incorrectly identified by the classifier as being negative. Third, if the actual classification is negative and the predicted classification is positive (0,1), this is called a false positive result because the negative sample is incorrectly identified by the classifier as being positive. Fourth, if the actual classification is negative and the predicted classification is negative (0,0), this is called a true negative result because the negative sample gets correctly identified by the classifier.

We can then perform the comparison between actual and predicted classifications and add this information to the table, making correct results appear in green so they are more easily identifiable.

Individual number 1 2 3 4 5 6 7 8 9 10 11 12
Actual classification 1 1 1 1 1 1 1 1 0 0 0 0
Predicted classification 0 0 1 1 1 1 1 1 1 0 0 0
Result FN FN TP TP TP TP TP TP FP TN TN TN

The template for any binary confusion matrix uses the four kinds of results discussed above (true positives, false negatives, false positives, and true negatives) along with the positive and negative classifications. The four outcomes can be formulated in a 2×2 confusion matrix, as follows:

Predicted condition
Total population
= P + N
Positive (PP) Negative (PN)
Actual condition
Positive (P) True positive (TP)
False negative (FN)
Negative (N) False positive (FP)
True negative (TN)
Sources: [4][5][6][7][8][9][10]

The color convention of the three data tables above were picked to match this confusion matrix, in order to easily differentiate the data.

Now, we can simply total up each type of result, substitute into the template, and create a confusion matrix that will concisely summarize the results of testing the classifier:

Predicted condition
Total

8 + 4 = 12

Cancer
7
Non-cancer
5
Actual condition
Cancer
8
6 2
Non-cancer
4
1 3

In this confusion matrix, of the 8 samples with cancer, the system judged that 2 were cancer-free, and of the 4 samples without cancer, it predicted that 1 did have cancer. All correct predictions are located in the diagonal of the table (highlighted in green), so it is easy to visually inspect the table for prediction errors, as values outside the diagonal will represent them. By summing up the 2 rows of the confusion matrix, one can also deduce the total number of positive (P) and negative (N) samples in the original dataset, i.e. and .

Table of confusion

[edit]

In predictive analytics, a table of confusion (sometimes also called a confusion matrix) is a table with two rows and two columns that reports the number of true positives, false negatives, false positives, and true negatives. This allows more detailed analysis than simply observing the proportion of correct classifications (accuracy). Accuracy will yield misleading results if the data set is unbalanced; that is, when the numbers of observations in different classes vary greatly.

For example, if there were 95 cancer samples and only 5 non-cancer samples in the data, a particular classifier might classify all the observations as having cancer. The overall accuracy would be 95%, but in more detail the classifier would have a 100% recognition rate (sensitivity) for the cancer class but a 0% recognition rate for the non-cancer class. F1 score is even more unreliable in such cases, and here would yield over 97.4%, whereas informedness removes such bias and yields 0 as the probability of an informed decision for any form of guessing (here always guessing cancer).

According to Davide Chicco and Giuseppe Jurman, the most informative metric to evaluate a confusion matrix is the Matthews correlation coefficient (MCC).[11]

Other metrics can be included in a confusion matrix, each of them having their significance and use.

Predicted condition Sources: [12][13][14][15][16][17][18][19]
Total population
= P + N
Predicted positive Predicted negative Informedness, bookmaker informedness (BM)
= TPR + TNR ? 1
Prevalence threshold (PT)
= ?TPR × FPR ? FPR/TPR ? FPR?
Actual condition
Positive (P) [a] True positive (TP),
hit[b]
False negative (FN),
miss, underestimation
True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power
= ?TP/P? = 1 ? FNR
False negative rate (FNR),
miss rate
type II error [c]
= ?FN/P? = 1 ? TPR
Negative (N)[d] False positive (FP),
false alarm, overestimation
True negative (TN),
correct rejection[e]
False positive rate (FPR),
probability of false alarm, fall-out
type I error [f]
= ?FP/N? = 1 ? TNR
True negative rate (TNR),
specificity (SPC), selectivity
= ?TN/N? = 1 ? FPR
Prevalence
= ?P/P + N?
Positive predictive value (PPV), precision
= ?TP/TP + FP? = 1 ? FDR
Negative predictive value (NPV)
= ?TN/TN + FN? = 1 ? FOR
Positive likelihood ratio (LR+)
= ?TPR/FPR?
Negative likelihood ratio (LR?)
= ?FNR/TNR?
Accuracy (ACC)
= ?TP + TN/P + N?
False discovery rate (FDR)
= ?FP/TP + FP? = 1 ? PPV
False omission rate (FOR)
= ?FN/TN + FN? = 1 ? NPV
Markedness (MK), deltaP (Δp)
= PPV + NPV ? 1
Diagnostic odds ratio (DOR)
= ?LR+/LR??
Balanced accuracy (BA)
= ?TPR + TNR/2?
F1 score
= ?2 PPV × TPR/PPV + TPR? = ?2 TP/2 TP + FP + FN?
Fowlkes–Mallows index (FM)
= PPV × TPR
phi or Matthews correlation coefficient (MCC)
= TPR × TNR × PPV × NPV - FNR × FPR × FOR × FDR
Threat score (TS), critical success index (CSI), Jaccard index
= ?TP/TP + FN + FP?
  1. ^ the number of real positive cases in the data
  2. ^ A test result that correctly indicates the presence of a condition or characteristic
  3. ^ Type II error: A test result which wrongly indicates that a particular condition or attribute is absent
  4. ^ the number of real negative cases in the data
  5. ^ A test result that correctly indicates the absence of a condition or characteristic
  6. ^ Type I error: A test result which wrongly indicates that a particular condition or attribute is present


Confusion matrices with more than two categories

[edit]

Confusion matrix is not limited to binary classification and can be used in multi-class classifiers as well. The confusion matrices discussed above have only two conditions: positive and negative. For example, the table below summarizes communication of a whistled language between two speakers, with zero values omitted for clarity.[20]

Perceived
vowel
Vowel
produced
i e a o u
i 15 1
e 1 1
a 79 5
o 4 15 3
u 2 2

Confusion matrices in multi-label and soft-label classification

[edit]

Confusion matrices are not limited to single-label classification (where only one class is present) or hard-label settings (where classes are either fully present, 1, or absent, 0). They can also be extended to Multi-label classification (where multiple classes can be predicted at once) and soft-label classification (where classes can be partially present).

One such extension is the Transport-based Confusion Matrix (TCM),[21] which builds on the theory of optimal transport and the principle of maximum entropy. TCM applies to single-label, multi-label, and soft-label settings. It retains the familiar structure of the standard confusion matrix: a square matrix sized by the number of classes, with diagonal entries indicating correct predictions and off-diagonal entries indicating confusion. In the single-label case, TCM is identical to the standard confusion matrix.

TCM follows the same reasoning as the standard confusion matrix: if class A is overestimated (its predicted value is greater than its label value) and class B is underestimated (its predicted value is less than its label value), A is considered confused with B, and the entry (B, A) is increased. If a class is both predicted and present, it is correctly identified, and the diagonal entry (A, A) increases. Optimal transport and maximum entropy are used to determine the extent to which these entries are updated.[21]

TCM enables clearer comparison between predictions and labels in complex classification tasks, while maintaining a consistent matrix format across settings.[21]

See also

[edit]

References

[edit]
  1. ^ Stehman, Stephen V. (1997). "Selecting and interpreting measures of thematic classification accuracy". Remote Sensing of Environment. 62 (1): 77–89. Bibcode:1997RSEnv..62...77S. doi:10.1016/S0034-4257(97)00083-7.
  2. ^ Powers, David M. W. (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation". Journal of Machine Learning Technologies. 2 (1): 37–63. S2CID 55767944.
  3. ^ Opitz, Juri (2024). "A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice". Transactions of the Association for Computational Linguistics. 12: 820–836. arXiv:2404.16958. doi:10.1162/tacl_a_00675.
  4. ^ Provost, Foster; Fawcett, Tom (2013). Data science for business: what you need to know about data mining and data-analytic thinking (1. ed., 2. release ed.). Beijing K?ln: O'Reilly. ISBN 978-1-4493-6132-7.
  5. ^ Fawcett, Tom (2006). "An Introduction to ROC Analysis" (PDF). Pattern Recognition Letters. 27 (8): 861–874. Bibcode:2006PaReL..27..861F. doi:10.1016/j.patrec.2005.10.010. S2CID 2027090.
  6. ^ Powers, David M. W. (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation". Journal of Machine Learning Technologies. 2 (1): 37–63.
  7. ^ Ting, Kai Ming (2011). Sammut, Claude; Webb, Geoffrey I. (eds.). Encyclopedia of machine learning. Springer. doi:10.1007/978-0-387-30164-8. ISBN 978-0-387-30164-8.
  8. ^ Brooks, Harold; Brown, Barb; Ebert, Beth; Ferro, Chris; Jolliffe, Ian; Koh, Tieh-Yong; Roebber, Paul; Stephenson, David (2025-08-07). "WWRP/WGNE Joint Working Group on Forecast Verification Research". Collaboration for Australian Weather and Climate Research. World Meteorological Organisation. Retrieved 2025-08-07.
  9. ^ Chicco D, Jurman G (January 2020). "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation". BMC Genomics. 21 (1): 6-1–6-13. doi:10.1186/s12864-019-6413-7. PMC 6941312. PMID 31898477.
  10. ^ Tharwat A. (August 2018). "Classification assessment methods". Applied Computing and Informatics. 17: 168–192. doi:10.1016/j.aci.2018.08.003.
  11. ^ Chicco D, Jurman G (January 2020). "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation". BMC Genomics. 21 (1): 6-1–6-13. doi:10.1186/s12864-019-6413-7. PMC 6941312. PMID 31898477.
  12. ^ Fawcett, Tom (2006). "An Introduction to ROC Analysis" (PDF). Pattern Recognition Letters. 27 (8): 861–874. doi:10.1016/j.patrec.2005.10.010. S2CID 2027090.
  13. ^ Provost, Foster; Tom Fawcett (2025-08-07). "Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking". O'Reilly Media, Inc.
  14. ^ Powers, David M. W. (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation". Journal of Machine Learning Technologies. 2 (1): 37–63.
  15. ^ Ting, Kai Ming (2011). Sammut, Claude; Webb, Geoffrey I. (eds.). Encyclopedia of machine learning. Springer. doi:10.1007/978-0-387-30164-8. ISBN 978-0-387-30164-8.
  16. ^ Brooks, Harold; Brown, Barb; Ebert, Beth; Ferro, Chris; Jolliffe, Ian; Koh, Tieh-Yong; Roebber, Paul; Stephenson, David (2025-08-07). "WWRP/WGNE Joint Working Group on Forecast Verification Research". Collaboration for Australian Weather and Climate Research. World Meteorological Organisation. Retrieved 2025-08-07.
  17. ^ Chicco D, Jurman G (January 2020). "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation". BMC Genomics. 21 (1): 6-1–6-13. doi:10.1186/s12864-019-6413-7. PMC 6941312. PMID 31898477.
  18. ^ Chicco D, Toetsch N, Jurman G (February 2021). "The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation". BioData Mining. 14 (13): 13. doi:10.1186/s13040-021-00244-z. PMC 7863449. PMID 33541410.
  19. ^ Tharwat A. (August 2018). "Classification assessment methods". Applied Computing and Informatics. 17: 168–192. doi:10.1016/j.aci.2018.08.003.
  20. ^ Rialland, Annie (August 2005). "Phonological and phonetic aspects of whistled languages". Phonology. 22 (2): 237–271. CiteSeerX 10.1.1.484.4384. doi:10.1017/S0952675705000552. S2CID 18615779.
  21. ^ a b c Erbani, Johan; Portier, Pierre-édouard; Egyed-Zsigmond, El?d; Nurbakova, Diana (2024). "Confusion Matrices: A Unified Theory". IEEE Access. IEEE.


春宵一刻值千金什么意思 主观臆断是什么意思 min是什么 老人适合喝什么茶 什么是幸福
a和ab型生的孩子是什么血型 女子与小人难养也什么意思 晨咳是什么原因引起的 孕妇肾积水是什么原因引起的 吃什么去除体内湿热
小孩肛门瘙痒什么原因 十二月十号是什么星座 广州有什么玩的 女性腋臭什么年龄消失 晚上喝蜂蜜水有什么好处
性生活频繁有什么危害 丁火命是什么意思 韬光养晦是什么意思 早上流鼻血是什么原因 屈膝是什么意思
儿童测骨龄挂什么科hcv9jop0ns2r.cn 甲状腺检查挂什么科hcv9jop4ns6r.cn 蓝颜是什么意思hcv7jop5ns3r.cn 广州白云区有什么好玩的地方fenrenren.com hpv11阳性是什么意思yanzhenzixun.com
尿沉渣检查什么hcv7jop5ns1r.cn 肾囊肿有什么危害hcv7jop9ns3r.cn 春秋鼎盛是什么意思hcv8jop8ns8r.cn 吃什么治疗阳痿hcv9jop2ns5r.cn 肺结核阳性是什么意思hcv9jop5ns0r.cn
1989是什么生肖hcv9jop6ns9r.cn 变态反应是什么意思hcv8jop2ns1r.cn 员工体检费计入什么科目hcv8jop2ns7r.cn 齐天大圣是什么级别hcv8jop7ns1r.cn 茶叶水洗脸有什么好处hcv7jop6ns1r.cn
头疼是为什么hcv8jop3ns3r.cn 早孕挂什么科检查hcv9jop7ns2r.cn approval是什么意思hcv7jop5ns5r.cn 头发晕是什么病的征兆hcv9jop1ns2r.cn 面色晄白是什么意思hcv8jop0ns2r.cn
百度