一九八三年属什么生肖| 脑梗需要注意什么| 灰姑娘叫什么名字| 什么的浪花| 标准工资指什么| 尿毒症的尿是什么颜色| 戏耍的近义词是什么| 6月1日是什么星座| sd什么意思| 孕中期同房要注意什么| 苦杏仁味是什么中毒| a03是什么| 拘留所和看守所有什么区别| 海带与什么食物相克| 池字五行属什么| 沾花惹草是什么生肖| 牙龈上火是什么原因引起的| 人心叵测什么意思| 性瘾是什么意思| 抑郁症吃什么药最好| 金字旁的字与什么有关| 掉眉毛是什么病| 衣原体感染用什么药| 味精是什么做的| 清明节一般开什么生肖| 因果循环是什么意思| 衣原体感染用什么药| atp是什么| 下面痒是什么原因女性| 破伤风感染后会出现什么症状| 梦游为什么不能叫醒| 黔驴技穷是什么意思| spa按摩是什么意思| 头部ct挂什么科| 童子是什么| 检查贫血做什么检查| 捐肾对身体有什么影响| 笑哭表情什么意思| 梦见做手术是什么意思| 脑梗要注意什么| 月经期间肚子疼是什么原因| 便秘吃什么有用| 周杰伦英文名叫什么| 台湾什么时候收回| 后会有期什么意思| 右枕前位是什么意思| fl什么意思| 大米发霉是什么样子| 有时候会感到莫名的难过是什么歌| 1975年五行属什么| 牙齿吃甜的就会疼什么原因| 可刀是什么意思| 滑膜炎用什么药治疗最好最快| 鸭肫是什么部位| 候车是什么意思| 吴京为什么看上谢楠| 月经一个月来两次什么原因| 痘痘里面挤出来的白色东西是什么| 欧阳修字什么号什么| 菩提子是什么材质| 姓卢的男孩起什么名字好| wm是什么牌子| 琥珀酱是什么味| 大便有粘液是什么原因| 什么是眼底病| 胸口痛是什么原因| 尿次数多是什么原因| 面肌痉挛是什么原因引起的| 晚上睡觉牙齿出血是什么原因| 老司机什么意思| 高血压适合吃什么水果| 本科什么意思| 流星雨是什么意思| 保姆代表什么生肖| 丙氨酸氨基转移酶高是什么意思| 腌肉放什么调料| 试纸一条红杠是什么意思| 胃酸胃胀吃什么药| 离婚需要什么资料| 为什么会长口腔溃疡| pd医学上是什么意思| 狗狗肠胃不好吃什么药最好| 6月份出生是什么星座| gc是什么意思| 减肥吃什么药瘦得快| 新生儿便秘怎么办什么方法最有效| 甲状腺功能检查挂什么科| 请问紫苏叶有什么功效| 电轴左偏是什么原因| 口干口苦挂什么科| 副局级干部是什么级别| 美国人喜欢什么颜色| 火克什么| 什么的寒冷| 宝宝发烧挂什么科| 水痘可以吃什么水果| 蚊子除了吸血还吃什么| 痤疮是什么引起的| 什么水果补血效果最好| 性功能下降吃什么药| 柠檬苦是什么原因| 肚子胀气吃什么好| 巩固是什么意思| 眉毛尾部有痣代表什么| 豆绿色配什么颜色好看| 什么是负氧离子| 电解质是什么| 蹦蹦跳跳的动物是什么生肖| 车抛锚是什么意思| 咖啡豆是什么动物粪便| 五大发展理念是什么| 9月19日是什么星座| 梦见租房子住是什么意思| 犀牛吃什么| 避孕套有什么危害| 喝铁观音茶有什么好处| 睡觉腿抽筋是什么原因| 求人办事送什么礼物好| hc2是什么检查| 1964年属什么的| 此刻朋友这杯酒最珍贵是什么歌| 亚撒西是什么意思| 雪媚娘是什么| 嗔什么意思| 男人吃什么补身体| 裸钻是什么| 尿浑浊是什么原因| 环磷酰胺是什么药| 欧米茄算什么档次| 血压低压高吃什么药| 反馈是什么意思| 史迪仔是什么动物| 一月30号是什么星座| 平痛新又叫什么| 晕倒是什么原因引起的| 银杏树叶子像什么| 喝酒有什么好处| 蜈蚣属于什么类动物| 为什么会长黑头| 怜悯之心是什么意思| edc是什么| 广东有什么好玩的地方| 既寿永昌什么意思| 铁锚是什么意思| 什么是再生纤维面料| 乙肝病毒核心抗体阳性是什么意思| 早上八点到九点属于什么时辰| 明朝北京叫什么| 扁桃体肥大有什么症状| 八珍胶囊适合什么人吃| 高血压会引起什么病症| 会来事是什么意思| 傻白甜的意思是什么| 医生停诊是什么意思| 十月30号是什么星座| hpv52高危阳性是什么意思| 什么的竹笋| 未成年改名字需要什么手续| 屁股疼是什么原因引起的| 澳大利亚说什么语| 三个龙是什么字| 载脂蛋白a偏高是什么意思| 肝主筋的筋是指什么| 妄想什么意思| 运动出汗多是什么原因| 非典型鳞状细胞意义不明确是什么意思| 肉麻是什么意思| 牙齿松动了有什么办法能固齿吗| 慢慢地什么填词语| 什么的诉说| 世界上最毒的蜘蛛叫什么| 开天辟地是什么生肖| 罗嘉良为什么娶苏岩| 有点拉肚子吃什么药| 西施长什么样| 肺虚吃什么药| 降钙素原检测是查什么的| 白发是什么原因引起的| 没有子宫会有什么影响| 猪跟什么生肖配对最好| 睡眠障碍是什么原因引起的| 低密度脂蛋白高是什么原因| 潮喷是什么| RH是什么| 三文鱼又叫什么鱼| 按人中有什么作用| 降钙素原高说明什么| collection什么牌子| 决断是什么意思| f是什么| 排便困难用什么药| 磨牙是什么原因引起的| 栩字五行属什么| 直爽是什么意思| 长红疹是什么原因| 为什么在| 男人阴茎硬不起来是什么原因| 前列腺炎吃什么| 仙居杨梅什么时候上市| 上24休24是什么意思| 左氧氟沙星是什么药| 瓷娃娃什么意思| 什么是ct检查| 阻生牙是什么意思| 经常腰疼是什么原因女| 棺材一般用什么木头| 智齿有什么用| 小孩子肚子痛吃什么药| 曹操姓什么| 交链孢霉过敏是什么| 贾赦和贾政是什么关系| 政治家是什么意思| 小巧思什么意思| 9.22是什么星座| moss是什么意思| 1996年出生属什么生肖| 香水前调中调后调是什么意思| 阑尾炎能吃什么水果| 什么叫业障| 女人为什么会来月经| 腮腺炎吃什么药好得快| 女性腰酸是什么妇科病| 拉油便是什么原因| 羊奶不能和什么一起吃| 有脚气是什么原因引起的| 怀孕前三个月应该注意什么| 李咏什么病| 荔枝什么时候过季| 金银花泡水喝有什么功效| 血红蛋白低是什么原因| 什么是煞气| 癫狂是什么意思| 1月1日什么星座| 尿道感染应该吃什么药| 经常拉稀是什么原因| 丁羟甲苯是什么| 博士的学位是什么| 大便发绿色是什么原因| 更迭是什么意思| 乙类药品是什么意思| pubg什么意思| 皮疹是什么样子的| 炒锅买什么材质的好| 牙龈出血吃什么药| 子宫疼是什么原因| 作践自己是什么意思| iv医学上什么意思| 67年的羊是什么命| 甲类传染病指什么| 肠胃炎吃什么药效果好| 医联体是什么意思| 尿里红细胞高什么原因| pv值是什么意思| 乙丑是什么生肖| 尊字五行属什么| der是什么意思| 消防队属于什么编制| 包皮炎用什么药最有效| 考法医需要什么条件| 女人养颜抗衰老吃什么最好| 英五行属什么| 白带黄什么原因| fossil是什么牌子| 251是什么意思| 百度Jump to content

什么是pin

From Wikipedia, the free encyclopedia
百度 这是世人认为出家人消极的主要原因。

In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of ,[1] such that: Note that has rows and columns, whereas the transformation is from to . There are alternative expressions of transformation matrices involving row vectors that are preferred by some authors.[2][3]

Uses

[edit]

Matrices allow arbitrary linear transformations to be displayed in a consistent format, suitable for computation.[1] This also allows transformations to be composed easily (by multiplying their matrices).

Linear transformations are not the only ones that can be represented by matrices. Some transformations that are non-linear on an n-dimensional Euclidean space Rn can be represented as linear transformations on the n+1-dimensional space Rn+1. These include both affine transformations (such as translation) and projective transformations. For this reason, 4×4 transformation matrices are widely used in 3D computer graphics, as they allow to perform translation, scaling, and rotation of objects by repeated matrix multiplication. These n+1-dimensional transformation matrices are called, depending on their application, affine transformation matrices, projective transformation matrices, or more generally non-linear transformation matrices. With respect to an n-dimensional matrix, an n+1-dimensional matrix can be described as an augmented matrix.

In the physical sciences, an active transformation is one which actually changes the physical position of a system, and makes sense even in the absence of a coordinate system whereas a passive transformation is a change in the coordinate description of the physical system (change of basis). The distinction between active and passive transformations is important. By default, by transformation, mathematicians usually mean active transformations, while physicists could mean either.

Put differently, a passive transformation refers to description of the same object as viewed from two different coordinate frames.

Finding the matrix of a transformation

[edit]

If one has a linear transformation in functional form, it is easy to determine the transformation matrix A by transforming each of the vectors of the standard basis by T, then inserting the result into the columns of a matrix. In other words,

For example, the function is a linear transformation. Applying the above process (suppose that n = 2 in this case) reveals that:

The matrix representation of vectors and operators depends on the chosen basis; a similar matrix will result from an alternate basis. Nevertheless, the method to find the components remains the same.

To elaborate, vector can be represented in basis vectors, with coordinates :

Now, express the result of the transformation matrix A upon , in the given basis:

The elements of matrix A are determined for a given basis E by applying A to every , and observing the response vector

This equation defines the wanted elements, , of j-th column of the matrix A.[4]

Eigenbasis and diagonal matrix

[edit]

Yet, there is a special basis for an operator in which the components form a diagonal matrix and, thus, multiplication complexity reduces to n. Being diagonal means that all coefficients except are zeros leaving only one term in the sum above. The surviving diagonal elements, , are known as eigenvalues and designated with in the defining equation, which reduces to . The resulting equation is known as eigenvalue equation.[5] The eigenvectors and eigenvalues are derived from it via the characteristic polynomial.

With diagonalization, it is often possible to translate to and from eigenbases.

Examples in 2 dimensions

[edit]

Most common geometric transformations that keep the origin fixed are linear, including rotation, scaling, shearing, reflection, and orthogonal projection; if an affine transformation is not a pure translation it keeps some point fixed, and that point can be chosen as origin to make the transformation linear. In two dimensions, linear transformations can be represented using a 2×2 transformation matrix.

Stretching

[edit]

A stretch in the xy-plane is a linear transformation which enlarges all distances in a particular direction by a constant factor but does not affect distances in the perpendicular direction. We only consider stretches along the x-axis and y-axis. A stretch along the x-axis has the form x' = kx; y' = y for some positive constant k. (Note that if k > 1, then this really is a "stretch"; if k < 1, it is technically a "compression", but we still call it a stretch. Also, if k = 1, then the transformation is an identity, i.e. it has no effect.)

The matrix associated with a stretch by a factor k along the x-axis is given by:

Similarly, a stretch by a factor k along the y-axis has the form x' = x; y' = ky, so the matrix associated with this transformation is

Squeezing

[edit]

If the two stretches above are combined with reciprocal values, then the transformation matrix represents a squeeze mapping: A square with sides parallel to the axes is transformed to a rectangle that has the same area as the square. The reciprocal stretch and compression leave the area invariant.

Rotation

[edit]

For rotation by an angle θ counterclockwise (positive direction) about the origin the functional form is and . Written in matrix form, this becomes:[6]

Similarly, for a rotation clockwise (negative direction) about the origin, the functional form is and the matrix form is:

These formulae assume that the x axis points right and the y axis points up.

Shearing

[edit]

For shear mapping (visually similar to slanting), there are two possibilities.

A shear parallel to the x axis has and . Written in matrix form, this becomes:

A shear parallel to the y axis has and , which has matrix form:

Reflection

[edit]

For reflection about a line that goes through the origin, let be a vector in the direction of the line. Then the transformation matrix is:

Orthogonal projection

[edit]

To project a vector orthogonally onto a line that goes through the origin, let be a vector in the direction of the line. Then the transformation matrix is:

As with reflections, the orthogonal projection onto a line that does not pass through the origin is an affine, not linear, transformation.

Parallel projections are also linear transformations and can be represented simply by a matrix. However, perspective projections are not, and to represent these with a matrix, homogeneous coordinates can be used.

Examples in 3 dimensions

[edit]

Rotation

[edit]

The matrix to rotate an angle θ about any axis defined by unit vector (x,y,z) is[7]

Reflection

[edit]

To reflect a point through a plane (which goes through the origin), one can use , where is the 3×3 identity matrix and is the three-dimensional unit vector for the vector normal of the plane. If the L2 norm of , , and is unity, the transformation matrix can be expressed as:

Note that these are particular cases of a Householder reflection in two and three dimensions. A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): where for some point on the plane, or equivalently, .

If the 4th component of the vector is 0 instead of 1, then only the vector's direction is reflected and its magnitude remains unchanged, as if it were mirrored through a parallel plane that passes through the origin. This is a useful property as it allows the transformation of both positional vectors and normal vectors with the same matrix. See homogeneous coordinates and affine transformations below for further explanation.

Composing and inverting transformations

[edit]

One of the main motivations for using matrices to represent linear transformations is that transformations can then be easily composed and inverted.

Composition is accomplished by matrix multiplication. Row and column vectors are operated upon by matrices, rows on the left and columns on the right. Since text reads from left to right, column vectors are preferred when transformation matrices are composed:

If A and B are the matrices of two linear transformations, then the effect of first applying A and then B to a column vector is given by:

In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices.

When A is an invertible matrix there is a matrix A?1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using general inversion algorithms or by performing inverse operations (that have obvious geometric interpretation, like rotating in opposite direction) and then composing them in reverse order. Reflection matrices are a special case because they are their own inverses and don't need to be separately calculated.

Other kinds of transformations

[edit]

Affine transformations

[edit]
Effect of applying various 2D affine transformation matrices on a unit square. Note that the reflection matrices are special cases of the scaling matrix.
Affine transformations on the 2D plane can be performed in three dimensions. Translation is done by shearing parallel to the xy plane, and rotation is performed around the z axis.

To represent affine transformations with matrices, we can use homogeneous coordinates. This means representing a 2-vector (x, y) as a 3-vector (x, y, 1), and similarly for higher dimensions. Using this system, translation can be expressed with matrix multiplication. The functional form becomes:

All ordinary linear transformations are included in the set of affine transformations, and can be described as a simplified form of affine transformations. Therefore, any linear transformation can also be represented by a general transformation matrix. The latter is obtained by expanding the corresponding linear transformation matrix by one row and column, filling the extra space with zeros except for the lower-right corner, which must be set to 1. For example, the counter-clockwise rotation matrix from above becomes:

Using transformation matrices containing homogeneous coordinates, translations become linear, and thus can be seamlessly intermixed with all other types of transformations. The reason is that the real plane is mapped to the w = 1 plane in real projective space, and so translation in real Euclidean space can be represented as a shear in real projective space. Although a translation is a non-linear transformation in a 2-D or 3-D Euclidean space described by Cartesian coordinates (i.e. it can't be combined with other transformations while preserving commutativity and other properties), it becomes, in a 3-D or 4-D projective space described by homogeneous coordinates, a simple linear transformation (a shear).

More affine transformations can be obtained by composition of two or more affine transformations. For example, given a translation T' with vector a rotation R by an angle θ counter-clockwise, a scaling S with factors and a translation T of vector the result M of T'RST is:[8]

When using affine transformations, the homogeneous component of a coordinate vector (normally called w) will never be altered. One can therefore safely assume that it is always 1 and ignore it. However, this is not true when using perspective projections.

Perspective projection

[edit]
Comparison of the effects of applying 2D affine and perspective transformation matrices on a unit square.

Another type of transformation, of importance in 3D computer graphics, is the perspective projection. Whereas parallel projections are used to project points onto the image plane along parallel lines, the perspective projection projects points onto the image plane along lines that emanate from a single point, called the center of projection. This means that an object has a smaller projection when it is far away from the center of projection and a larger projection when it is closer (see also reciprocal function).

The simplest perspective projection uses the origin as the center of projection, and the plane at as the image plane. The functional form of this transformation is then ; . We can express this in homogeneous coordinates as:

After carrying out the matrix multiplication, the homogeneous component will be equal to the value of and the other three will not change. Therefore, to map back into the real plane we must perform the homogeneous divide or perspective divide by dividing each component by :

More complicated perspective projections can be composed by combining this one with rotations, scales, translations, and shears to move the image plane and center of projection wherever they are desired.

See also

[edit]

References

[edit]
  1. ^ a b Gentle, James E. (2007). "Matrix Transformations and Factorizations". Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer. ISBN 9780387708737.
  2. ^ Rafael Artzy (1965) Linear Geometry
  3. ^ J. W. P. Hirschfeld (1979) Projective Geometry of Finite Fields, Clarendon Press
  4. ^ Nearing, James (2010). "Chapter 7.3 Examples of Operators" (PDF). Mathematical Tools for Physics. ISBN 978-0486482125. Retrieved January 1, 2012.
  5. ^ Nearing, James (2010). "Chapter 7.9: Eigenvalues and Eigenvectors" (PDF). Mathematical Tools for Physics. ISBN 978-0486482125. Retrieved January 1, 2012.
  6. ^ "Lecture Notes" (PDF). ocw.mit.edu. Retrieved 2025-08-06.
  7. ^ Szymanski, John E. (1989). Basic Mathematics for Electronic Engineers:Models and Applications. Taylor & Francis. p. 154. ISBN 0278000681.
  8. ^ Cédric Jules (February 25, 2015). "2D transformation matrices baking".
[edit]
一什么图画 阳虚吃什么好 女性下体长什么样 打完除皱针注意事项有什么 杨梅有什么功效和作用
退役是什么意思 中国最高军衔是什么 羊水栓塞是什么意思 安络血又叫什么名 放疗后吃什么恢复快
偏头痛吃什么药最好 什么是妇科病 头很容易出汗什么原因 网黄是什么意思 五红汤什么时候喝最好
生物工程专业学什么 阿莫西林吃多了有什么副作用 聤耳是什么意思 头上出汗多是什么原因 提前吃什么喝酒不醉
霸王龙吃什么1949doufunao.com 骶管囊肿是什么意思helloaicloud.com 49岁属什么hcv8jop0ns8r.cn 前列腺增生用什么药好hcv7jop9ns7r.cn 考研复试考什么hcv8jop7ns6r.cn
lily是什么花hcv9jop6ns1r.cn 月和什么有关imcecn.com lpa是什么意思hcv7jop9ns3r.cn 肚子胀打嗝是什么原因hcv8jop7ns1r.cn 天天睡不着觉什么原因hcv8jop2ns9r.cn
人类祖先是什么动物hcv7jop5ns3r.cn 为什么大医院不用宫腔镜人流hcv9jop3ns4r.cn 排卵期为什么会出血hcv8jop3ns2r.cn 黄风怪是什么动物gangsutong.com 一什么凳子bysq.com
风湿挂什么科bjhyzcsm.com 大云是什么中药hcv8jop4ns5r.cn 肝病初期有什么症状hcv9jop1ns9r.cn 尿道口感染吃什么药bfb118.com 为什么会得甲亢hcv8jop1ns9r.cn
百度