四月四号什么星座| 满族八大碗都有什么菜| 香港奶粉为什么限购| 葡萄籽有什么功效| 线下是什么意思| 阴蒂瘙痒是什么原因| 钠是什么东西| 吃什么补孕酮| 东莞市委书记什么级别| 发光免疫是检查什么的| ha是什么单位| 梦到自己孩子死了是什么征兆| 牛排用什么油煎好吃| 小孩便秘吃什么食物好| 什么时候有流星| 肝内钙化斑是什么意思| 湿疹为什么要查肝功能| 胃炎糜烂吃什么食物好| 白眼狼什么意思| 婆婆妈妈什么意思| 最好的红酒是什么牌子| 11.22什么星座| 甲状腺结节挂什么科室| 梨是什么季节的水果| 血液净化是什么意思| 体育生能报什么专业| 龙和什么生肖最配| 红色加绿色等于什么颜色| 嗯呢什么意思| 2012年是什么命| 什么是传染病| 孩子晚上睡觉磨牙是什么原因| 空调外机为什么会滴水| 顾名思义什么意思| feel什么意思| total什么意思| 经络是什么意思| 高危病变是什么意思| 狂野是什么意思| 屎是黑色的是什么原因| 放任是什么意思| 说话声音小是什么原因| 珍母口服液有什么作用| 胎盘低是什么原因造成的| 朱元璋为什么杀蓝玉| 五戒十善是什么| 吃中药不可以吃什么水果| 女性喝什么利尿最快| 马车标志是什么品牌| 儿童个子矮小看什么科| 频发室性早搏吃什么药| 帽子的英文是什么| 罐肠什么意思| 62岁属什么| 为什么坐久了屁股疼| 2022是什么年| 梦见眼镜蛇是什么预兆| 易烊千玺什么星座| 什么什么发抖| 口腔痛什么原因| 为什么会尿路感染| 紫菜和海带有什么区别| 胸闷气短是什么症状| 齐博林手表是什么档次| 2029年属什么生肖| 血沉高忌口什么| 放河灯是什么节日| 尿黄起泡是什么原因| 羟丁酸脱氢酶高是什么原因| 青鸾是什么意思| 脑梗会引起什么症状| 水为什么是蓝色的| 什么的黎明| 所不欲勿施于人是什么意思| 梦见发工资了是什么意思| 一点半是什么时辰| 胆管炎是什么原因引起的| 肩周炎挂什么科| 1983年五行属什么| rhe阴性是什么意思| 葡萄糖高是什么意思| 上海市市委书记是什么级别| 挚友是指什么的朋友| 舌头干涩是什么原因| 梦见做手术是什么意思| 怀孕有什么表现| 经常反义词是什么| 地格是什么意思| 姐姐的老公叫什么| 北阳台适合种什么植物| 特发性震颤是什么病| 冬虫夏草长什么样| 猕猴桃对身体有什么好处| 倒三角是什么意思| 11月份是什么星座| 甲木命是什么意思| 巴斯光年是什么意思| 生育证是什么| 血糖高检查什么项目| 北极熊为什么不怕冷| 路虎为什么叫奇瑞路虎| 眼皮发黑是什么原因| 有什么有什么的四字词语| 翡翠和玉有什么区别| rds是什么意思| 肾虚吃什么药好| 血管堵塞吃什么药好| 慢性胰腺炎有什么症状| 缺锌有什么症状| 教师节贺卡上写什么| 怀孕查雌二醇什么作用| 青提是什么| tp代表什么| opc是什么意思| 1130是什么星座| 血压高呕吐是什么征兆| 黄茶适合什么人喝| 水克什么| 今年是什么年天干地支| 99年属兔的是什么命| 王者风范是什么意思| 梦见老公有外遇预示什么| 小茴香是什么| 炎性肉芽肿是什么意思| 看淡一切对什么都没兴趣| 笔画最多的字是什么| 巴卡是什么意思| 低压高吃什么药效果好| cream什么意思| 力不到不为财是什么意思| 晚上放屁多是什么原因| 鹅口疮是什么| 什么的生长| 真菌孢子阳性什么意思| 肚子容易饿是什么原因| 农历4月14日是什么星座| 点痣挂什么科| 阿胶糕什么人不能吃| 蒙奇奇是什么动物| 痣为什么会越来越多| 特长有什么| 尿素是什么肥料| 家婆是什么意思| 迁徙是什么意思| 骨膜炎用什么药| 秘书是干什么的| 轻度肠化是什么意思| 遇上方知有什么意思| 免疫比浊法是什么意思| 为什么会心肌梗死| 水逆是什么意思| 健康证照片用什么底色| 什么食物好消化| 什么的流动| 肺慢阻是什么情况| 植脂末是什么| 牙上有黑渍是什么原因| 梦见洗脚是什么意思| 开平方是什么意思| 甲钴胺的副作用是什么| 双肾结晶是什么意思| 胳膊肘发黑是什么原因| 胸闷心慌是什么病| 为什么抽烟就想拉屎| zuczug是什么牌子| chick是什么意思| 颈椎挂什么科| 什么色什么异| 已知晓是什么意思| 36计的第一计是什么| 倒反天罡是什么意思| 肌肉酸痛是什么原因| 代言人是什么意思| hardy是什么意思| 子宫前位什么姿势易孕| 呆若木鸡的意思是什么| 小腿酸胀痛是什么原因| 为什么叫客家人| 做照影是检查什么| 天门冬氨酸氨基转移酶是什么| 五谷杂粮是什么| le是什么元素| 尿路感染什么症状| 化疗后吃什么补身体| 梦到知了猴是什么意思| 虾米是什么意思| 热痱子是什么原因引起的| 微创人流和无痛人流有什么区别| 县委副书记是什么级别| 卫生间除臭用什么最好| 东坡肉是什么菜系| 什么手机拍照效果最好| 湿气重可以吃什么水果| 香港代表什么生肖| 2月30日是什么星座| up主是什么意思| 安宫丸什么时候吃效果是最佳的| 雄性激素是什么| 什么水果治便秘| 卵巢低回声是什么意思| 孙权字什么| 煜这个字读什么| 请节哀是什么意思| 京酱肉丝用什么肉| 木星是什么颜色| 肺不好吃什么| 42天产后检查都检查什么项目| 水镜先生和司马懿是什么关系| 什么叫cta检查| hpv跟tct有什么区别| 孕期感冒可以吃什么药| 无聊干什么| 吃桃胶有什么作用| 精索炎吃什么药最好| 肠胃感冒是什么症状| messi是什么意思| 蜜饯是什么| cap医学上是什么意思| 引产和流产有什么区别| 耳鸣是什么病引起的| 八字华盖是什么意思| 丹桂飘香是什么季节| 猪肉炒什么菜好吃| 幽闭恐惧症是什么症状| 黑糖是什么糖| 什么军什么马| 纳呆什么意思| 什么是虚荣心| 血小板压积是什么意思| 反贪局局长是什么级别| 心动过缓吃什么药| 儿童风热感冒吃什么药| 糯米粉可以做什么好吃的| 梦见猪是什么意思| 蓟什么意思| 尿酸高尿液是什么颜色| 蟑螂讨厌什么味道| 阳痿早泄吃什么药好| 为什么养猫就没有蟑螂| 什么护肤品最好用| 血管瘤是什么症状| 射进去什么感觉| 引产是什么意思| 低密度脂蛋白高吃什么药| 声色什么| 防晒衣什么材质最防晒| 榧子是什么| 大便很臭什么原因| 六点是什么时辰| 乌龟爬进家暗示什么| 局灶癌变是什么意思| 最贵的金属是什么| 蒙古古代叫什么| 副区长是什么级别| 什么是69| 人授后吃什么容易着床| 五指毛桃长什么样| 四爱是什么意思| 蛇五行属什么| 落枕吃什么药好得快| 胃轻度肠化是什么意思| 肾炎可以吃什么水果| vc是什么意思| 1月7日是什么星座| 百度Jump to content

广西简政放权“放管服”一个都不缺

From Wikipedia, the free encyclopedia
百度 副省长徐建培主持会议。

A simulation of two virtual chemicals reacting and diffusing on a Torus using the Gray–Scott model

Reaction–diffusion systems are mathematical models that correspond to several physical phenomena. The most common is the change in space and time of the concentration of one or more chemical substances: local chemical reactions in which the substances are transformed into each other, and diffusion which causes the substances to spread out over a surface in space.

Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential equations. They can be represented in the general form

where q(x, t) represents the unknown vector function, D is a diagonal matrix of diffusion coefficients, and R accounts for all local reactions. The solutions of reaction–diffusion equations display a wide range of behaviours, including the formation of travelling waves and wave-like phenomena as well as other self-organized patterns like stripes, hexagons or more intricate structure like dissipative solitons. Such patterns have been dubbed "Turing patterns".[1] Each function, for which a reaction diffusion differential equation holds, represents in fact a concentration variable.

One-component reaction–diffusion equations

[edit]

The simplest reaction–diffusion equation is in one spatial dimension in plane geometry,

is also referred to as the Kolmogorov–Petrovsky–Piskunov equation.[2] If the reaction term vanishes, then the equation represents a pure diffusion process. The corresponding equation is Fick's second law. The choice R(u) = u(1 ? u) yields Fisher's equation that was originally used to describe the spreading of biological populations,[3] the Newell–Whitehead-Segel equation with R(u) = u(1 ? u2) to describe Rayleigh–Bénard convection,[4][5] the more general Zeldovich–Frank-Kamenetskii equation with R(u) = u(1 ? u)e-β(1-u) and 0 < β < (Zeldovich number) that arises in combustion theory,[6] and its particular degenerate case with R(u) = u2 ? u3 that is sometimes referred to as the Zeldovich equation as well.[7]

The dynamics of one-component systems is subject to certain restrictions as the evolution equation can also be written in the variational form

and therefore describes a permanent decrease of the "free energy" given by the functional

with a potential V(u) such that R(u) = ?dV(u)/du?.

A travelling wave front solution for Fisher's equation.

In systems with more than one stationary homogeneous solution, a typical solution is given by travelling fronts connecting the homogeneous states. These solutions move with constant speed without changing their shape and are of the form u(x, t) = ?(ξ) with ξ = x ? ct, where c is the speed of the travelling wave. Note that while travelling waves are generically stable structures, all non-monotonous stationary solutions (e.g. localized domains composed of a front-antifront pair) are unstable. For c = 0, there is a simple proof for this statement:[8] if u0(x) is a stationary solution and u = u0(x) + ?(x, t) is an infinitesimally perturbed solution, linear stability analysis yields the equation

With the ansatz ? = ψ(x)exp(?λt) we arrive at the eigenvalue problem

of Schr?dinger type where negative eigenvalues result in the instability of the solution. Due to translational invariance ψ = ?x?u0(x) is a neutral eigenfunction with the eigenvalue λ = 0, and all other eigenfunctions can be sorted according to an increasing number of nodes with the magnitude of the corresponding real eigenvalue increases monotonically with the number of zeros. The eigenfunction ψ = ?x?u0(x) should have at least one zero, and for a non-monotonic stationary solution the corresponding eigenvalue λ = 0 cannot be the lowest one, thereby implying instability.

To determine the velocity c of a moving front, one may go to a moving coordinate system and look at stationary solutions:

This equation has a nice mechanical analogue as the motion of a mass D with position ? in the course of the "time" ξ under the force R with the damping coefficient c which allows for a rather illustrative access to the construction of different types of solutions and the determination of c.

When going from one to more space dimensions, a number of statements from one-dimensional systems can still be applied. Planar or curved wave fronts are typical structures, and a new effect arises as the local velocity of a curved front becomes dependent on the local radius of curvature (this can be seen by going to polar coordinates). This phenomenon leads to the so-called curvature-driven instability.[9]

Two-component reaction–diffusion equations

[edit]

Two-component systems allow for a much larger range of possible phenomena than their one-component counterparts. An important idea that was first proposed by Alan Turing is that a state that is stable in the local system can become unstable in the presence of diffusion.[10]

A linear stability analysis however shows that when linearizing the general two-component system

a plane wave perturbation

of the stationary homogeneous solution will satisfy

Turing's idea can only be realized in four equivalence classes of systems characterized by the signs of the Jacobian R of the reaction function. In particular, if a finite wave vector k is supposed to be the most unstable one, the Jacobian must have the signs

This class of systems is named activator-inhibitor system after its first representative: close to the ground state, one component stimulates the production of both components while the other one inhibits their growth. Its most prominent representative is the FitzHugh–Nagumo equation

with ?f?(u) = λu ? u3 ? κ which describes how an action potential travels through a nerve.[11][12] Here, du, dv, τ, σ and λ are positive constants.

When an activator-inhibitor system undergoes a change of parameters, one may pass from conditions under which a homogeneous ground state is stable to conditions under which it is linearly unstable. The corresponding bifurcation may be either a Hopf bifurcation to a globally oscillating homogeneous state with a dominant wave number k = 0 or a Turing bifurcation to a globally patterned state with a dominant finite wave number. The latter in two spatial dimensions typically leads to stripe or hexagonal patterns.

For the Fitzhugh–Nagumo example, the neutral stability curves marking the boundary of the linearly stable region for the Turing and Hopf bifurcation are given by

If the bifurcation is subcritical, often localized structures (dissipative solitons) can be observed in the hysteretic region where the pattern coexists with the ground state. Other frequently encountered structures comprise pulse trains (also known as periodic travelling waves), spiral waves and target patterns. These three solution types are also generic features of two- (or more-) component reaction–diffusion equations in which the local dynamics have a stable limit cycle[13]

Three- and more-component reaction–diffusion equations

[edit]

For a variety of systems, reaction–diffusion equations with more than two components have been proposed, e.g. the Belousov–Zhabotinsky reaction,[14] for blood clotting,[15] fission waves[16] or planar gas discharge systems.[17]

It is known that systems with more components allow for a variety of phenomena not possible in systems with one or two components (e.g. stable running pulses in more than one spatial dimension without global feedback).[18] An introduction and systematic overview of the possible phenomena in dependence on the properties of the underlying system is given in.[19]

Applications and universality

[edit]

In recent times, reaction–diffusion systems have attracted much interest as a prototype model for pattern formation.[20] The above-mentioned patterns (fronts, spirals, targets, hexagons, stripes and dissipative solitons) can be found in various types of reaction–diffusion systems in spite of large discrepancies e.g. in the local reaction terms. It has also been argued that reaction–diffusion processes are an essential basis for processes connected to morphogenesis in biology[21][22] and may even be related to animal coats and skin pigmentation.[23][24] Other applications of reaction–diffusion equations include ecological invasions,[25] spread of epidemics,[26] tumour growth,[27][28][29] dynamics of fission waves,[30] wound healing[31] and visual hallucinations.[32] Another reason for the interest in reaction–diffusion systems is that although they are nonlinear partial differential equations, there are often possibilities for an analytical treatment.[8][9][33][34][35][20]

Experiments

[edit]

Well-controllable experiments in chemical reaction–diffusion systems have up to now been realized in three ways. First, gel reactors[36] or filled capillary tubes[37] may be used. Second, temperature pulses on catalytic surfaces have been investigated.[38][39] Third, the propagation of running nerve pulses is modelled using reaction–diffusion systems.[11][40]

Aside from these generic examples, it has turned out that under appropriate circumstances electric transport systems like plasmas[41] or semiconductors[42] can be described in a reaction–diffusion approach. For these systems various experiments on pattern formation have been carried out.

Numerical treatments

[edit]

A reaction–diffusion system can be solved by using methods of numerical mathematics. There exist several numerical treatments in research literature.[43][20][44] Numerical solution methods for complex geometries are also proposed.[45][46] Reaction-diffusion systems are described to the highest degree of detail with particle based simulation tools like SRSim or ReaDDy[47] which employ among others reversible interacting-particle reaction dynamics.[48]

See also

[edit]

Examples

[edit]

References

[edit]
  1. ^ Wooley, T. E., Baker, R. E., Maini, P. K., Chapter 34, Turing's theory of morphogenesis. In Copeland, B. Jack; Bowen, Jonathan P.; Wilson, Robin; Sprevak, Mark (2017). The Turing Guide. Oxford University Press. ISBN 978-0198747826.
  2. ^ Kolmogorov, A., Petrovskii, I. and Piskunov, N. (1937) Study of a Diffusion Equation That Is Related to the Growth of a Quality of Matter and Its Application to a Biological Problem. Moscow University Mathematics Bulletin, 1, 1-26.
  3. ^ R. A. Fisher, Ann. Eug. 7 (1937): 355
  4. ^ Newell, Alan C.; Whitehead, J. A. (September 3, 1969). "Finite bandwidth, finite amplitude convection". Journal of Fluid Mechanics. 38 (2). Cambridge University Press (CUP): 279–303. Bibcode:1969JFM....38..279N. doi:10.1017/s0022112069000176. ISSN 0022-1120. S2CID 73620481.
  5. ^ Segel, Lee A. (August 14, 1969). "Distant side-walls cause slow amplitude modulation of cellular convection". Journal of Fluid Mechanics. 38 (1). Cambridge University Press (CUP): 203–224. Bibcode:1969JFM....38..203S. doi:10.1017/s0022112069000127. ISSN 0022-1120. S2CID 122764449.
  6. ^ Y. B. Zeldovich and D. A. Frank-Kamenetsky, Acta Physicochim. 9 (1938): 341
  7. ^ B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion Convection Reaction, Birkh?user (2004)
  8. ^ a b P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer (1979)
  9. ^ a b A. S. Mikhailov, Foundations of Synergetics I. Distributed Active Systems, Springer (1990)
  10. ^ Turing, A. M. (August 14, 1952). "The chemical basis of morphogenesis". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 237 (641). The Royal Society: 37–72. Bibcode:1952RSPTB.237...37T. doi:10.1098/rstb.1952.0012. ISSN 2054-0280.
  11. ^ a b FitzHugh, Richard (1961). "Impulses and Physiological States in Theoretical Models of Nerve Membrane". Biophysical Journal. 1 (6). Elsevier BV: 445–466. Bibcode:1961BpJ.....1..445F. doi:10.1016/s0006-3495(61)86902-6. ISSN 0006-3495. PMC 1366333. PMID 19431309.
  12. ^ J. Nagumo et al., Proc. Inst. Radio Engin. Electr. 50 (1962): 2061
  13. ^ Kopell, N.; Howard, L. N. (1973). "Plane Wave Solutions to Reaction-Diffusion Equations". Studies in Applied Mathematics. 52 (4). Wiley: 291–328. doi:10.1002/sapm1973524291. ISSN 0022-2526.
  14. ^ Vanag, Vladimir K.; Epstein, Irving R. (March 24, 2004). "Stationary and Oscillatory Localized Patterns, and Subcritical Bifurcations". Physical Review Letters. 92 (12). American Physical Society (APS): 128301. Bibcode:2004PhRvL..92l8301V. doi:10.1103/physrevlett.92.128301. ISSN 0031-9007. PMID 15089714.
  15. ^ Lobanova, E. S.; Ataullakhanov, F. I. (August 26, 2004). "Running Pulses of Complex Shape in a Reaction-Diffusion Model". Physical Review Letters. 93 (9). American Physical Society (APS): 098303. Bibcode:2004PhRvL..93i8303L. doi:10.1103/physrevlett.93.098303. ISSN 0031-9007. PMID 15447151.
  16. ^ Osborne, A. G.; Recktenwald, G. D.; Deinert, M. R. (June 2012). "Propagation of a solitary fission wave". Chaos: An Interdisciplinary Journal of Nonlinear Science. 22 (2): 023148. Bibcode:2012Chaos..22b3148O. doi:10.1063/1.4729927. hdl:2152/43281. ISSN 1054-1500. PMID 22757555.
  17. ^ H.-G. Purwins et al. in: Dissipative Solitons, Lectures Notes in Physics, Ed. N. Akhmediev and A. Ankiewicz, Springer (2005)
  18. ^ Schenk, C. P.; Or-Guil, M.; Bode, M.; Purwins, H.-G. (May 12, 1997). "Interacting Pulses in Three-Component Reaction-Diffusion Systems on Two-Dimensional Domains". Physical Review Letters. 78 (19). American Physical Society (APS): 3781–3784. Bibcode:1997PhRvL..78.3781S. doi:10.1103/physrevlett.78.3781. ISSN 0031-9007.
  19. ^ A. W. Liehr: Dissipative Solitons in Reaction Diffusion Systems. Mechanism, Dynamics, Interaction. Volume 70 of Springer Series in Synergetics, Springer, Berlin Heidelberg 2013, ISBN 978-3-642-31250-2
  20. ^ a b c Gupta, Ankur; Chakraborty, Saikat (January 2009). "Linear stability analysis of high- and low-dimensional models for describing mixing-limited pattern formation in homogeneous autocatalytic reactors". Chemical Engineering Journal. 145 (3): 399–411. Bibcode:2009ChEnJ.145..399G. doi:10.1016/j.cej.2008.08.025. ISSN 1385-8947.
  21. ^ L.G. Harrison, Kinetic Theory of Living Pattern, Cambridge University Press (1993)
  22. ^ Duran-Nebreda, Salva; Pla, Jordi; Vidiella, Blai; Pi?ero, Jordi; Conde-Pueyo, Nuria; Solé, Ricard (January 15, 2021). "Synthetic Lateral Inhibition in Periodic Pattern Forming Microbial Colonies". ACS Synthetic Biology. 10 (2): 277–285. doi:10.1021/acssynbio.0c00318. ISSN 2161-5063. PMC 8486170. PMID 33449631.
  23. ^ H. Meinhardt, Models of Biological Pattern Formation, Academic Press (1982)
  24. ^ Murray, James D. (March 9, 2013). Mathematical Biology. Springer Science & Business Media. pp. 436–450. ISBN 978-3-662-08539-4.
  25. ^ Holmes, E. E.; Lewis, M. A.; Banks, J. E.; Veit, R. R. (1994). "Partial Differential Equations in Ecology: Spatial Interactions and Population Dynamics". Ecology. 75 (1). Wiley: 17–29. Bibcode:1994Ecol...75...17H. doi:10.2307/1939378. ISSN 0012-9658. JSTOR 1939378. S2CID 85421773.
  26. ^ Murray, James D.; Stanley, E. A.; Brown, D. L. (November 22, 1986). "On the spatial spread of rabies among foxes". Proceedings of the Royal Society of London. Series B. Biological Sciences. 229 (1255). The Royal Society: 111–150. Bibcode:1986RSPSB.229..111M. doi:10.1098/rspb.1986.0078. ISSN 2053-9193. PMID 2880348. S2CID 129301761.
  27. ^ Chaplain, M. A. J. (1995). "Reaction–diffusion prepatterning and its potential role in tumour invasion". Journal of Biological Systems. 03 (4). World Scientific Pub Co Pte Lt: 929–936. doi:10.1142/s0218339095000824. ISSN 0218-3390.
  28. ^ Sherratt, J. A.; Nowak, M. A. (June 22, 1992). "Oncogenes, anti-oncogenes and the immune response to cancer : a mathematical model". Proceedings of the Royal Society B: Biological Sciences. 248 (1323). The Royal Society: 261–271. doi:10.1098/rspb.1992.0071. ISSN 0962-8452. PMID 1354364. S2CID 11967813.
  29. ^ R.A. Gatenby and E.T. Gawlinski, Cancer Res. 56 (1996): 5745
  30. ^ Osborne, Andrew G.; Deinert, Mark R. (October 2021). "Stability instability and Hopf bifurcation in fission waves". Cell Reports Physical Science. 2 (10): 100588. Bibcode:2021CRPS....200588O. doi:10.1016/j.xcrp.2021.100588. S2CID 240589650.
  31. ^ Sherratt, J. A.; Murray, J. D. (July 23, 1990). "Models of epidermal wound healing". Proceedings of the Royal Society B: Biological Sciences. 241 (1300). The Royal Society: 29–36. doi:10.1098/rspb.1990.0061. ISSN 0962-8452. PMID 1978332. S2CID 20717487.
  32. ^ "A Math Theory for Why People Hallucinate". July 30, 2018.
  33. ^ P. Grindrod, Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations, Clarendon Press (1991)
  34. ^ J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer (1994)
  35. ^ B. S. Kerner and V. V. Osipov, Autosolitons. A New Approach to Problems of Self-Organization and Turbulence, Kluwer Academic Publishers (1994)
  36. ^ Lee, Kyoung-Jin; McCormick, William D.; Pearson, John E.; Swinney, Harry L. (1994). "Experimental observation of self-replicating spots in a reaction–diffusion system". Nature. 369 (6477). Springer Nature: 215–218. Bibcode:1994Natur.369..215L. doi:10.1038/369215a0. ISSN 0028-0836. S2CID 4257570.
  37. ^ Hamik, Chad T; Steinbock, Oliver (June 6, 2003). "Excitation waves in reaction-diffusion media with non-monotonic dispersion relations". New Journal of Physics. 5 (1). IOP Publishing: 58. Bibcode:2003NJPh....5...58H. doi:10.1088/1367-2630/5/1/358. ISSN 1367-2630.
  38. ^ Rotermund, H. H.; Jakubith, S.; von Oertzen, A.; Ertl, G. (June 10, 1991). "Solitons in a surface reaction". Physical Review Letters. 66 (23). American Physical Society (APS): 3083–3086. Bibcode:1991PhRvL..66.3083R. doi:10.1103/physrevlett.66.3083. ISSN 0031-9007. PMID 10043694.
  39. ^ Graham, Michael D.; Lane, Samuel L.; Luss, Dan (1993). "Temperature pulse dynamics on a catalytic ring". The Journal of Physical Chemistry. 97 (29). American Chemical Society (ACS): 7564–7571. doi:10.1021/j100131a028. ISSN 0022-3654.
  40. ^ Hodgkin, A. L.; Huxley, A. F. (August 28, 1952). "A quantitative description of membrane current and its application to conduction and excitation in nerve". The Journal of Physiology. 117 (4). Wiley: 500–544. doi:10.1113/jphysiol.1952.sp004764. ISSN 0022-3751. PMC 1392413. PMID 12991237.
  41. ^ Bode, M.; Purwins, H.-G. (1995). "Pattern formation in reaction-diffusion systems - dissipative solitons in physical systems". Physica D: Nonlinear Phenomena. 86 (1–2). Elsevier BV: 53–63. Bibcode:1995PhyD...86...53B. doi:10.1016/0167-2789(95)00087-k. ISSN 0167-2789.
  42. ^ E. Sch?ll, Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors, Cambridge University Press (2001)
  43. ^ S.Tang et al., J.Austral.Math.Soc. Ser.B 35(1993): 223–243
  44. ^ GollyGang/ready, GollyGang, August 20, 2024, retrieved September 4, 2024
  45. ^ Isaacson, Samuel A.; Peskin, Charles S. (2006). "Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations". SIAM J. Sci. Comput. 28 (1): 47–74. Bibcode:2006SJSC...28...47I. CiteSeerX 10.1.1.105.2369. doi:10.1137/040605060.
  46. ^ Linker, Patrick (2016). "Numerical methods for solving the reactive diffusion equation in complex geometries". The Winnower.
  47. ^ Sch?neberg, Johannes; Ullrich, Alexander; Noé, Frank (October 24, 2014). "Simulation tools for particle-based reaction-diffusion dynamics in continuous space". BMC Biophysics. 7 (1): 11. doi:10.1186/s13628-014-0011-5. ISSN 2046-1682. PMC 4347613. PMID 25737778.
  48. ^ Fr?hner, Christoph, and Frank Noé. "Reversible interacting-particle reaction dynamics." The Journal of Physical Chemistry B 122.49 (2018): 11240-11250.
[edit]
分泌性中耳炎吃什么药 女生大姨妈推迟是什么原因 腰封是什么 宰相肚里能撑船是什么意思 什么树
孕妇地中海贫血对胎儿有什么影响 77是什么意思 少一颗牙齿有什么影响 男性hpv挂什么科 原生家庭是什么意思
菩提树长什么样 骨髓不造血是什么病 什么是违反禁令标志指示 拿什么拯救你我的爱人演员表 石字旁有什么字
脑血栓不能吃什么 耳鸣吃什么中成药 一什么杯子 比利时说什么语言 什么药可以流产
排骨炒什么配菜好吃hcv9jop8ns2r.cn 天秤女和什么座最配对hcv8jop1ns5r.cn 饭圈是什么意思hcv8jop7ns3r.cn 香片属于什么茶hcv8jop4ns1r.cn 蝙蝠来家里是什么预兆hcv9jop2ns7r.cn
淋巴细胞绝对值偏高是什么原因hcv8jop6ns3r.cn 627是什么意思hcv7jop9ns2r.cn 最高人民法院院长什么级别hcv8jop3ns5r.cn 中国什么姓氏人口最多hcv9jop3ns8r.cn 翻什么覆什么beikeqingting.com
xxoo什么意思hcv9jop4ns6r.cn 牙龈肿痛吃什么中成药hcv8jop3ns3r.cn 猫吐了吃什么药liaochangning.com 喝白茶有什么好处hcv9jop6ns7r.cn 四级什么时候报名hcv8jop9ns9r.cn
720是什么意思hcv9jop0ns5r.cn 什么app可以买烟hcv8jop0ns4r.cn 周围型肺ca是什么意思hcv9jop3ns8r.cn 夏天喝什么茶减肥hcv9jop7ns4r.cn 自我安慰是什么意思hcv8jop0ns4r.cn
百度