糖尿病患者可以吃什么水果| 吃饭咬舌头是什么原因| 女性尿频尿急吃什么药| 阴瑜伽是什么意思| 颈椎反弓是什么意思| 为什么狗不能吃巧克力| 什么什么为笑| 气血不足吃什么中成药最好| canyou是什么意思| 下身瘙痒用什么药| 为伊消得人憔悴什么意思| 21是什么意思| 糖耐筛查主要检查什么| 女人吃鹿鞭有什么好处| 鼻梁有痣代表什么| 草鱼吃什么| 拔罐颜色紫黑代表什么| 尿路感染吃什么药比较好的快| po是什么的缩写| 寸金难买寸光阴什么意思| 纳少是什么意思| 在干什么| wrong什么意思| 日值上朔是什么意思| 恭敬地看的词语是什么| 6月8号什么星座| 心血管科是看什么病| 6月30日是什么日子| 456是什么意思| 生男生女取决于什么| 献血有什么好处和坏处| 稍高回声是什么意思| 结石是什么原因造成的| 天五行属性是什么| 宁静是什么民族| 梦见做棺材是什么意思| 用什么回奶最快最有效| 蜜饯是什么意思| 万马奔腾是什么意思| 姬松茸和什么煲汤最佳| 大便一粒一粒的是什么原因| 老被蚊子咬是什么原因| 什么是小三| 香槟玫瑰花语是什么意思| 祸起萧墙的萧墙指什么| 骨质疏松用什么药好| 实至名归什么意思| 梦见摘桃子是什么意思| 6月16号是什么星座| 水晶粉是什么原料做的| 男人交公粮什么意思| 木棉是什么面料| 脾肾阳虚是什么意思| 热量的单位是什么| 哺乳期吃避孕药对孩子有什么影响| 亚麻籽是什么植物| 颈椎不好挂什么科| 什么人不适合做业务员| 来月经吃什么水果| 不吃香菜什么意思| 男性内分泌失调有什么症状| 什么什么的荷叶| 情窦初开什么意思| 甲功不正常有什么表现| 蝙蝠为什么倒挂着睡觉| 异卵双胞胎是什么意思| 韦编三绝什么意思| 宫颈切片检查是什么| 痛风吃什么最好| 肌酐300多属于什么期| 准奏是什么意思| 1948属什么生肖| 为什么会宫寒| 频繁打哈欠是什么原因| 男生喉结不明显是为什么| 五指毛桃长什么样子| 茉莉花茶属于什么茶| 小孩晚上睡不着是什么原因| 口炎是什么字| 蛋白质是由什么组成的| 杭州灵隐寺求什么最灵| 韩信属什么生肖| 葛根有什么作用| 武汉大学校长是什么级别| 天丝是什么| 施教区是什么意思| 茵是什么意思| 头顶痛吃什么药效果好| b是什么元素| 长期便秘喝什么茶好| 什么食物含碘高| 为什么刚小便完又有尿意| 大尾巴狼是什么意思| 九二年属什么| 检查脂肪肝做什么检查| 为什么上小厕会有刺痛感| 男孩学什么专业有前途| 晚上喝什么茶好| 慕强什么意思| 万圣节为什么要送糖果| 丹参粉有什么作用和功效| 腰扭伤挂什么科| 石榴代表什么生肖| 长期吸烟容易引起什么疾病| 12356是什么电话| 失物招领是什么意思| 木棉花什么时候开花| 螃蟹是什么季节吃的| 泌乳素高是什么原因| o型血阳性是什么意思| 声泪俱下是什么意思| 很多条腿的虫子叫什么| 杨枝甘露是什么意思| 妙赞是什么意思| 为什么人要喝水| 鼻子毛白了是什么原因| 晚上七点是什么时辰| 猪日冲蛇什么意思| 唐宝是什么意思| 正财透干是什么意思| 双肾尿盐结晶是什么意思| 免疫球蛋白是什么东西| 三个女人一台戏什么意思| 氯雷他定片什么时候吃| take是什么意思| 肝实质回声密集是什么意思| 桥本甲状腺炎吃什么药| 最近嗜睡是什么原因| 疱疹性咽峡炎吃什么药最管用| 做梦梦见鬼是什么意思| 酒花是什么| 勾芡用什么粉最好| 瘦人吃什么能长胖| 冰箱灯不亮是什么原因| 乌鸡蛋什么颜色| 华妃娘娘是什么电视剧| 蚊子咬了涂什么| 云南白药的保险子是起什么作用的| 一语道破什么意思| 张韶涵什么星座| 什么东西可以去口臭呀| 卿卿是什么意思| 指甲的月牙代表什么| 怀孕后吃避孕药有什么后果| 脑子嗡嗡响是什么原因| 大排畸和四维的区别是什么| 喝什么缓解痛经最有效| 体内湿气重吃什么药| pt是什么金属| 什么是教育| 副部长是什么级别| 为什么会梦遗| 7朵玫瑰花代表什么意思| 拉肚子能喝什么| 姑息治疗什么意思| 肝血不足吃什么食补最快| 大娘的老公叫什么| 老公工作劳累炖什么汤| 一阴一阳是什么数字| 三个又读什么| 放浪形骸是什么意思| 牙齿疼是什么原因引起的| 毒龙钻是什么| 彻夜难眠什么意思| 贤良淑德后半句是什么| 荻是什么意思| hb是什么意思| 豆浆喝多了有什么坏处| 今年是什么年号| 荞麦长什么样子图片| 男人要的归属感是什么| 北京户口有什么好处| 不以规矩下一句是什么| 手上起倒刺是缺什么| 降钙素原检测是什么| 白细胞计数偏高是什么原因| 子卯相刑有什么危害| 1月9日什么星座| 玫瑰花和什么一起泡水喝好| 什么样的秋天| 7.11是什么日子| 万事如意是什么生肖| 为什么夏天容易拉肚子| 得济是什么意思| girl什么意思| ca199偏高是什么意思| 日记可以写什么| 多此一举是什么生肖| 杜仲泡水喝有什么功效| 肠鸣是什么原因引起的| 伤口流水是什么原因| 嘴苦是什么原因引起的| 什么地叹气| 胸痛什么原因| 大象的耳朵像什么一样| 牦牛角手串有什么作用| 澄面粉是什么面粉| 双子女和什么座最配对| 吃什么可以增肥| 左枕前位是什么意思| 环孢素是什么药| 炸薯条用什么淀粉| 梦见弟媳妇是什么预兆| 麻酱是什么做的| 病毒感染发烧吃什么药| 成吉思汗叫什么名字| 米线是用什么做的| 噤若寒蝉是什么意思| 尿血挂什么科| 血小板减少吃什么药| 嘴巴里甜甜的是什么原因| 大殓是什么意思| 现在是什么时间| 胎盘什么时候形成| 64年出生属什么| 九月生日是什么星座| 面色少华是什么意思| 互联网是干什么的| 右肾错构瘤是什么病| 范字五行属什么| 女性分泌物带血是什么原因| 血糖偏高能吃什么水果和食物最好| 78岁属什么生肖| 婴儿蚊虫叮咬红肿用什么药| 烧裆是什么原因| 吓得什么填空| 出柜是什么意思| 博士在古代是什么意思| 自私什么意思| 腋臭和狐臭有什么区别| 医学上ca是什么意思| gift是什么意思| 什么是潮汐车道| 拔了智齿需要注意什么| 农历二月是什么月| 被cue是什么意思| 脑疝是什么意思| 什么地什么| 嗜酸性气道炎症是什么意思| 膝盖响是什么原因| 当兵苦到什么程度| 夹腿是什么意思| 胃肠化是什么意思| 女生被插是什么感觉| 征文是什么| 吉可以加什么偏旁| 泡脚有什么好处| 十三是什么意思| 甲状腺手术后有什么后遗症| 高锰酸钾用什么能洗掉| 中国属于什么人种| 龙井茶属于什么茶| 钾低是什么原因| 筒子骨炖什么好吃| 鲁迅是什么家| 盐茶是什么茶| 月牙是什么| 鹿几念什么| 额窦炎吃什么药效果好| 坚强后盾是什么意思| 夏季风寒感冒吃什么药| 脾虚湿蕴证是什么意思| 什么是大三阳| 荔枝肉是什么菜系| 百度Jump to content

热-幽兰行天下:7月3日淘金早参

From Wikipedia, the free encyclopedia
百度 ”目前在长沙一家医药公司从事会计工作的孟晓慧,是金柱的代理团队成员之一,她说,我们90年的已经被95后追赶到这种程度了,有一种被拍死在沙滩上的感觉。

Three examples of Turing patterns
Six stable states from Turing equations, the last one forms Turing patterns

The Turing pattern is a concept introduced by English mathematician Alan Turing in a 1952 paper titled "The Chemical Basis of Morphogenesis", which describes how patterns in nature, such as stripes and spots, can arise naturally and autonomously from a homogeneous, uniform state.[1][2] The pattern arises due to Turing instability, which in turn arises due to the interplay between differential diffusion of chemical species and chemical reaction. The instability mechanism is surprising because a pure diffusion, such as molecular diffusion, would be expected to have a stabilizing influence on the system (i.e., complete mixing).

Overview

[edit]

In his paper,[1] Turing examined the behaviour of a system in which two diffusible substances interact with each other, and found that such a system is able to generate a spatially periodic pattern even from a random or almost uniform initial condition.[3] Prior to the discovery of this instability mechanism arising due to unequal diffusion coefficients of the two substances, diffusional effects were always presumed to have stabilizing influences on the system.

Turing hypothesized that the resulting wavelike patterns are the chemical basis of morphogenesis.[3] Turing patterning is often found in combination with other patterns: vertebrate limb development is one of the many phenotypes exhibiting Turing patterning overlapped with a complementary pattern (in this case a French flag model).[4]

Before Turing, Yakov Zeldovich in 1944 discovered this instability mechanism in connection with the cellular structures observed in lean hydrogen flames.[5] Zeldovich explained the cellular structure as a consequence of hydrogen's diffusion coefficient being larger than the thermal diffusion coefficient. In combustion literature, Turing instability is referred to as diffusive–thermal instability.

Concept

[edit]
A Turing bifurcation pattern
An example of a natural Turing pattern on a giant pufferfish

The original theory, a reaction–diffusion theory of morphogenesis, has served as an important model in theoretical biology.[6] Reaction–diffusion systems have attracted much interest as a prototype model for pattern formation. Patterns such as fronts, hexagons, spirals, stripes and dissipative solitons are found as solutions of Turing-like reaction–diffusion equations.[7]

Turing proposed a model wherein two homogeneously distributed substances (P and S) interact to produce stable patterns during morphogenesis. These patterns represent regional differences in the concentrations of the two substances. Their interactions would produce an ordered structure out of random chaos.[8]

In Turing's model, substance P promotes the production of more substance P as well as substance S. However, substance S inhibits the production of substance P; if S diffuses more readily than P, sharp waves of concentration differences will be generated for substance P. An important feature of Turing's model is that particular wavelengths in the substances' distribution will be amplified while other wavelengths will be suppressed.[8]

The parameters depend on the physical system under consideration. In the context of fish skin pigmentation, the associated equation is a three field reaction–diffusion one in which the linear parameters are associated with pigmentation cell concentration and the diffusion parameters are not the same for all fields.[9] In dye-doped liquid crystals, a photoisomerization process in the liquid crystal matrix is described as a reaction–diffusion equation of two fields (liquid crystal order parameter and concentration of cis-isomer of the azo-dye).[10] The systems have very different physical mechanisms on the chemical reactions and diffusive process, but on a phenomenological level, both have the same ingredients.

Turing-like patterns have also been demonstrated to arise in developing organisms without the classical requirement of diffusible morphogens. Studies in chick and mouse embryonic development suggest that the patterns of feather and hair-follicle precursors can be formed without a morphogen pre-pattern, and instead are generated through self-aggregation of mesenchymal cells underlying the skin.[11][12] In these cases, a uniform population of cells can form regularly patterned aggregates that depend on the mechanical properties of the cells themselves and the rigidity of the surrounding extra-cellular environment. Regular patterns of cell aggregates of this sort were originally proposed in a theoretical model formulated by George Oster, which postulated that alterations in cellular motility and stiffness could give rise to different self-emergent patterns from a uniform field of cells.[13] This mode of pattern formation may act in tandem with classical reaction-diffusion systems, or independently to generate patterns in biological development.

Turing patterns may also be responsible for the formation of human fingerprints.[14]

As well as in biological organisms, Turing patterns occur in other natural systems – for example, the wind patterns formed in sand, the atomic-scale repetitive ripples that can form during growth of bismuth crystals, and the uneven distribution of matter in galactic disc.[15][16] Although Turing's ideas on morphogenesis and Turing patterns remained dormant for many years, they are now inspirational for much research in mathematical biology.[17] It is a major theory in developmental biology; the importance of the Turing model is obvious, as it provides an answer to the fundamental question of morphogenesis: "how is spatial information generated in organisms?".[3]

Turing patterns can also be created in nonlinear optics as demonstrated by the Lugiato–Lefever equation.

Biological application

[edit]
Simulations of effect of limb bud distal expansion[18]

A mechanism that has gained increasing attention as a generator of spot- and stripe-like patterns in developmental systems is related to the chemical reaction-diffusion process described by Turing in 1952. This has been schematized in a biological "local autoactivation-lateral inhibition" (LALI) framework by Meinhardt and Gierer.[19] LALI systems, while formally similar to reaction-diffusion systems, are more suitable to biological applications, since they include cases where the activator and inhibitor terms are mediated by cellular "reactors" rather than simple chemical reactions,[20] and spatial transport can be mediated by mechanisms in addition to simple diffusion.[21] These models can be applied to limb formation and teeth development among other examples.

Reaction-diffusion models can be used to forecast the exact location of the tooth cusps in mice and voles based on differences in gene expression patterns.[8] The model can be used to explain the differences in gene expression between mice and vole teeth, the signaling center of the tooth, enamel knot, secrets BMPs, FGFs and Shh. Shh and FGF inhibits BMP production, while BMP stimulates both the production of more BMPs and the synthesis of their own inhibitors. BMPs also induce epithelial differentiation, while FGFs induce epithelial growth.[22] The result is a pattern of gene activity that changes as the shape of the tooth changes, and vice versa. Under this model, the large differences between mouse and vole molars can be generated by small changes in the binding constants and diffusion rates of the BMP and Shh proteins. A small increase in the diffusion rate of BMP4 and a stronger binding constant of its inhibitor is sufficient to change the vole pattern of tooth growth into that of the mouse.[22][23]

Experiments with the sprouting of chia seeds planted in trays have confirmed Turing's mathematical model.[24]

See also

[edit]

References

[edit]
  1. ^ a b Turing, Alan (1952). "The Chemical Basis of Morphogenesis" (PDF). Philosophical Transactions of the Royal Society of London B. 237 (641): 37–72. Bibcode:1952RSPTB.237...37T. doi:10.1098/rstb.1952.0012. JSTOR 92463. S2CID 120437796.
  2. ^ Stewart, Ian (1998). Life's Other Secret: The New Mathematics of the Living World. London: Allen Lane. pp. 138–140, 142–146, 148, 149, 151, 152. ISBN 0-713-99161-5. OCLC 43126766.
  3. ^ a b c Kondo, Shigeru (7 February 2017). "An updated kernel-based Turing model for studying the mechanisms of biological pattern formation". Journal of Theoretical Biology. 414: 120–127. Bibcode:2017JThBi.414..120K. doi:10.1016/j.jtbi.2016.11.003. ISSN 0022-5193. PMID 27838459.
  4. ^ Sharpe, James; Green, Jeremy (2015). "Positional information and reaction-diffusion: two big ideas in developmental biology combine". Development. 142 (7): 1203–1211. doi:10.1242/dev.114991. hdl:10230/25028. PMID 25804733.
  5. ^ Zeldovich, Y. B. (1944). Theory of Combustion and Detonation of Gases. Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynamics (pp. 162-232). Princeton: Princeton University Press
  6. ^ Harrison, L. G. (1993). "Kinetic Theory of Living Pattern". Endeavour. 18 (4). Cambridge University Press: 130–6. doi:10.1016/0160-9327(95)90520-5. PMID 7851310.
  7. ^ Kondo, S.; Miura, T. (23 September 2010). "Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation". Science. 329 (5999): 1616–1620. Bibcode:2010Sci...329.1616K. doi:10.1126/science.1179047. PMID 20929839. S2CID 10194433.
  8. ^ a b c Gilbert, Scott F. (2014). Developmental Biology (Tenth ed.). Sunderland, Massachusetts: Sinauer Associates. ISBN 978-0-87893-978-7. OCLC 837923468.
  9. ^ Nakamasu, A.; Takahashi, G.; Kanbe, A.; Kondo, S. (11 May 2009). "Interactions between zebrafish pigment cells responsible for the generation of Turing patterns". Proceedings of the National Academy of Sciences. 106 (21): 8429–8434. Bibcode:2009PNAS..106.8429N. doi:10.1073/pnas.0808622106. PMC 2689028. PMID 19433782.
  10. ^ Andrade-Silva, Ignacio; Bortolozzo, Umberto; Clerc, Marcel G.; González-Cortés, Gregorio; Residori, Stefania; Wilson, Mario (27 August 2018). "Spontaneous light-induced Turing patterns in a dye-doped twisted nematic layer". Scientific Reports. 8 (1): 12867. Bibcode:2018NatSR...812867A. doi:10.1038/s41598-018-31206-x. PMC 6110868. PMID 30150701.
  11. ^ Glover, James D.; Wells, Kirsty L.; Matth?us, Franziska; Painter, Kevin J.; Ho, William; Riddell, Jon; Johansson, Jeanette A.; Ford, Matthew J.; Jahoda, Colin A. B.; Klika, Vaclav; Mort, Richard L. (2017). "Hierarchical patterning modes orchestrate hair follicle morphogenesis". PLOS Biology. 15 (7): e2002117. doi:10.1371/journal.pbio.2002117. PMC 5507405. PMID 28700594.
  12. ^ Shyer, Amy E.; Rodrigues, Alan R.; Schroeder, Grant G.; Kassianidou, Elena; Kumar, Sanjay; Harland, Richard M. (2017). "Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin". Science. 357 (6353): 811–815. doi:10.1126/science.aai7868. PMC 5605277. PMID 28705989.
  13. ^ Oster, G. F.; Murray, J. D.; Harris, A. K. (1983). "Mechanical aspects of mesenchymal morphogenesis". Journal of Embryology and Experimental Morphology. 78: 83–125. PMID 6663234.
  14. ^ Gaines, James M. "Finally, Scientists Uncover the Genetic Basis of Fingerprints". TheScientist. Retrieved 27 February 2023.
  15. ^ Fuseya, Yuki; Katsuno, Hiroyasu; Behnia, Kamran; Kapitulnik, Aharon (8 July 2021). "Nanoscale Turing patterns in a bismuth monolayer". Nature Physics. 17 (9): 1031–1036. arXiv:2104.01058. Bibcode:2021NatPh..17.1031F. doi:10.1038/s41567-021-01288-y. ISSN 1745-2481. S2CID 237767233.
  16. ^ Smolin, Lee (3 December 1996). "Galactic disks as reaction-diffusion systems". arXiv:astro-ph/9612033.
  17. ^ Woolley, T. E., Baker, R. E., Maini, P. K., Chapter 34, Turing's theory of morphogenesis. In Copeland, B. Jack; Bowen, Jonathan P.; Wilson, Robin; Sprevak, Mark (2017). The Turing Guide. Oxford University Press. ISBN 978-0198747826.
  18. ^ Zhu, Jianfeng; Zhang, Yong-Tao; Alber, Mark S.; Newman, Stuart A. (28 May 2010). Isalan, Mark (ed.). "Bare Bones Pattern Formation: A Core Regulatory Network in Varying Geometries Reproduces Major Features of Vertebrate Limb Development and Evolution". PLOS ONE. 5 (5): e10892. Bibcode:2010PLoSO...510892Z. doi:10.1371/journal.pone.0010892. ISSN 1932-6203. PMC 2878345. PMID 20531940.
  19. ^ Meinhardt, Hans (2008), "Models of Biological Pattern Formation: From Elementary Steps to the Organization of Embryonic Axes", Multiscale Modeling of Developmental Systems, Current Topics in Developmental Biology, vol. 81, Elsevier, pp. 1–63, doi:10.1016/s0070-2153(07)81001-5, ISBN 978-0-12-374253-7, PMID 18023723
  20. ^ Hentschel, H. G. E.; Glimm, Tilmann; Glazier, James A.; Newman, Stuart A. (22 August 2004). "Dynamical mechanisms for skeletal pattern formation in the vertebrate limb". Proceedings of the Royal Society of London. Series B: Biological Sciences. 271 (1549): 1713–1722. doi:10.1098/rspb.2004.2772. ISSN 0962-8452. PMC 1691788. PMID 15306292.
  21. ^ Lander, Arthur D. (January 2007). "Morpheus Unbound: Reimagining the Morphogen Gradient". Cell. 128 (2): 245–256. doi:10.1016/j.cell.2007.01.004. ISSN 0092-8674. PMID 17254964. S2CID 14173945.
  22. ^ a b Salazar-Ciudad, Isaac; Jernvall, Jukka (March 2010). "A computational model of teeth and the developmental origins of morphological variation". Nature. 464 (7288): 583–586. Bibcode:2010Natur.464..583S. doi:10.1038/nature08838. ISSN 1476-4687. PMID 20220757. S2CID 323733.
  23. ^ Salazar-ciudad, Isaac; Jernvall, Jukka (January 2004). "How different types of pattern formation mechanisms affect the evolution of form and development". Evolution and Development. 6 (1): 6–16. doi:10.1111/j.1525-142x.2004.04002.x. ISSN 1520-541X. PMID 15108813. S2CID 1783730.
  24. ^ Riordon, James R. (26 March 2023). "Chia seedlings verify Alan Turing's ideas about patterns in nature". ScienceNews.

Further reading

[edit]
梦见自己生男孩是什么意思 生完孩子可以吃什么水果 弱肉强食什么意思 痢疾是什么原因引起的 吹空调喉咙痛什么原因
鸡涌是什么意思 ask是什么意思 什么人生病从来不看医生 爱拍马屁的动物是什么生肖 打鼾挂什么科
处暑的含义是什么意思 6月23号是什么星座 白头发多是什么原因 骨裂是什么感觉 井里面一个点念什么
月亮星座代表什么意思 闲敲棋子落灯花上一句是什么 人为什么要洗澡 比特币是什么意思 射精太快吃什么药
拔牙后吃什么消炎药最好hcv9jop0ns6r.cn 蚂蚁代表什么生肖hcv8jop0ns6r.cn 脐下三寸是什么地方hcv9jop3ns4r.cn 高压低是什么原因引起的hcv9jop5ns4r.cn 犹太人说什么语言hcv8jop3ns1r.cn
身上长很多痣是什么原因hcv8jop0ns6r.cn 学位证书有什么用wuhaiwuya.com 肌酸是什么hcv9jop1ns3r.cn 下焦湿热吃什么药hcv9jop0ns0r.cn 酒品是什么意思hcv9jop6ns9r.cn
逸事是什么意思hcv9jop3ns6r.cn 主人是什么意思hcv8jop7ns4r.cn 月经为什么会推迟hcv9jop7ns4r.cn 痱子粉什么牌子好hcv8jop0ns0r.cn 妗子是什么意思hcv7jop7ns0r.cn
脓疱疮是什么原因引起的hcv8jop3ns0r.cn 茭头是什么hcv7jop9ns8r.cn 臼是什么意思hcv8jop7ns1r.cn o型血溶血是什么意思hcv9jop7ns9r.cn 消心痛又叫什么hcv8jop4ns2r.cn
百度