十月份是什么星座的| 10月12号是什么星座| 手足口一般擦什么药膏| 心律不齐是什么症状| 菜板买什么材质的好| 性生活过后出血是什么原因| 被蚂蚁咬了涂什么药| 7.14什么星座| 细菌是什么| 预防是什么意思| 无名指麻木是什么原因| 北豆腐是什么| 可遇不可求什么意思| 什么病会引起背部疼痛| 支那人是什么意思| 理想是什么意思| 正方形的纸能折什么| 小狗起什么名字好听| 91年属什么生肖| 补充胶原蛋白吃什么最好| 死心眼什么意思| 什么是自限性疾病| 小孩为什么会得手足口病| 尿道感染是什么原因引起| 砍单是什么意思| 脚脖子肿是什么原因| 鱼香肉丝用什么肉| clinic是什么意思| 什么叫绝对值| 现在什么餐饮最火| 社保卡属于什么银行| 梦见打台球是什么意思| 如虎添翼是什么生肖| 滴虫性阴道炎用什么药| 变白吃什么| 手术后能吃什么水果| 什么帽不能戴| 残联是什么性质的单位| 小孩胃疼吃什么药好| 鲁班是干什么的| 眼睛长黄斑是什么原因| 什么是鸡奸| 胃反酸烧心吃什么药| 鹤膝风是什么病| amp是什么| 镶嵌什么意思| 股癣用什么药膏好得快| 4a广告公司什么意思| 三伏天是什么时候开始| 脑干堵塞什么症状| 滑石粉是什么| 孟夏是什么意思| 老年人吃什么钙片补钙好| 藏风聚气是什么意思| 舌根发黄是什么原因造成的| 淋巴细胞绝对值偏高是什么原因| 为什么会得带状疱疹| 痰中带血吃什么药| 美乃滋是什么| 萨瓦迪卡是什么意思| psa升高代表什么| pp材质是什么意思| 蛇盘疮吃什么药好得快| 空前绝后是什么生肖| 中科院是干什么的| 孩子咳嗽吃什么药效果好| 神是什么意思| 曾舜晞是什么星座| 嘴下面起痘是什么原因| 女生说6524是什么意思| 副乡长是什么级别| 下面干涩是什么原因导致的| 副高是什么职称| 吃什么补肝血| 甲亢病是什么原因引起的| 李世民属什么生肖| 卵巢囊肿是什么引起的| 天上的彩虹像什么| 胆囊炎吃什么药| 胃功能三项检查是什么| 什么是抗阻运动| 脖子左侧疼是什么前兆| 女人什么时候最想男人| 月经不调吃什么药好| 钠低是什么原因| 感冒嗓子哑了吃什么药| 流清鼻涕打喷嚏吃什么药| 人贫血吃什么补得快| 翌日是什么意思| 蚊子喜欢什么血型的人| 笔名什么意思| 月经来吃什么水果好| 自己家院子种什么树好| 什么时候母亲节| 长江后浪推前浪是什么意思| ccu是什么病房| 反清复明的组织叫什么| 寅木是什么木| 蚂蚁上树什么姿势| 岳绮罗是什么来历| 过敏忌口不能吃什么| 三个火是什么字念什么| 滴虫长什么样子图片| 匹马棉是什么面料| 血热吃什么药效果好| 列文虎克发现了什么| 耻骨高是什么原因| 天天吹空调有什么危害| 看眼睛挂什么科| 吃什么东西补血最快最有效| 如果你是什么就什么造句| 吃是什么意思| 口苦口干吃什么药好| 2月10日什么星座| 鸡胸是什么原因引起的| 鹰头皮带是什么牌子| 孙耀威为什么被雪藏| 小猫咪能吃什么| 小叶苦丁茶有什么作用和功效| 吃葡萄干对身体有什么好处| 大便溏薄是什么意思| 掉头发是身体缺少什么| 小儿鼻炎用什么药好| 肝有问题会出现什么症状| 泌乳素高是什么原因引起的| 二月四号是什么星座| 等闲识得东风面下一句是什么| 鼻涕臭是什么原因| 社保卡是干什么用的| 沃尔玛是干什么的| 肝寒吃什么中成药| 跑步大腿痒是什么原因| 西药是用什么材料做的| 粽叶是什么植物| pa66是什么材料| 吃什么有助于骨头愈合| 副团长是什么军衔| 体检前一天不能吃什么| 员额制是什么意思| 副营级是什么军衔| 迪丽热巴什么星座| 恶作剧是什么意思| 肾不好会有什么症状| cdfi是什么意思| 玉五行属什么| 常喝蜂蜜水有什么好处和坏处| 尉迟恭是什么生肖| 尿素高是什么意思| 快速补血吃什么| msm是什么意思| 格格是什么意思| 孕妇牙龈出血是什么原因| 泌尿科挂什么科| 早晨起床手肿胀是什么原因| 种什么最赚钱| 迂回什么意思| 印度是什么制度的国家| 鱼龙混杂什么意思| armour是什么牌子| 红曲是什么| 新晋是什么意思| 收缩压低是什么原因| 七叶子是什么意思| 什么是树脂材料| 什么四海| 什么是白色家电| 生殖器疱疹擦什么药| 玥字属于五行属什么| 两个菱形是什么牌子| 唇钉是干什么用的| 香港是什么时候回归的| 奶油是什么做的| 结婚35周年是什么婚| 关羽的武器叫什么| 牛初乳是什么| 身上老出汗是什么原因引起的| 吃什么补气血效果最好| 耳机降噪是什么意思| 头发为什么会白| 月经不干净是什么原因| 2009年是什么生肖| 爱情是什么样| 治疗风湿有什么好方法| 梦见袜子破了是什么意思| 准将是什么级别| 为什么一直打哈欠| 急性心力衰竭的急救措施是什么| 低烧可以吃什么药| iabp医学上是什么意思| 什么是肺结核| 嘴巴发麻是什么原因| 1.4是什么星座| 六安瓜片是什么茶| 气血不足有什么症状| diff是什么意思| 海娜是什么| 产妇月子吃什么下奶多| 脖子后面正中间有痣代表什么| 包茎是什么| 追悔莫及什么意思| nt宝宝不配合说明什么| 蓝色妖姬适合送什么人| 天煞是什么意思| 什么是三宝| 跟腱炎吃什么药效果好| 鸡头米是什么东西| 吹胡子瞪眼是什么意思| 脑萎缩是什么症状| 为什么一喝水就出汗| 7月16日是什么星座| 泌乳素高是什么原因| 开理疗店需要什么证件| 河南属于什么平原| 棕色短裤配什么颜色上衣| 胸部发炎是什么症状| 什么是帽子戏法| 纯磨玻璃结节是什么意思| 阳历3月是什么星座| 心肌供血不足用什么药| 胎盘做成胶囊吃有什么好处| 细菌感染有什么症状表现| 情何以堪是什么意思| 竹节虫吃什么| 1902年属什么生肖| 过敏什么东西不能吃| 脱氢酶高是什么原因| 宫颈管少量积液是什么意思| gucci是什么意思| 总是流鼻血是什么原因| 属虎五行属什么| 海螺吃什么食物| 什么人会得免疫性脑炎| 吃什么能提神不打瞌睡| elf是什么意思| 扁桃体是什么| 早上睡不醒是什么原因| 死了是什么感觉| 为什么腹部隐隐作痛| 复方氨酚烷胺片是什么药| 胃溃疡吃什么食物好| 天天洗头发有什么危害| baleno是什么牌子| 婚检查什么| 冷冻跟冷藏有什么区别| 梨子是什么季节的水果| 规格是什么意思| 睡眠不好是什么原因引起的| 看膝盖挂什么科| 多饮多尿可能是什么病| 沙僧的武器叫什么名字| 兔死狐悲是什么生肖| 我做错了什么| 鱼白是什么东西| 摩托车代表什么生肖| 空指什么生肖| 小狗发烧吃什么药| 什么海翻江| 脑梗能吃什么| 吹空调感冒吃什么药| 坐小月子可以吃什么水果| 谷丙转氨酶是检查什么| 二十四节气分别是什么| 夏天煲什么汤最好| 治霉菌性阴炎用什么药好得快| 百度Jump to content

Китайская Экономика

From Wikipedia, the free encyclopedia
(Redirected from Efficient estimator)
百度 终场结束前,他先是将北控队球员一脚极具威胁的射门扑出底线,接下来,在北控队利用角球机会准备扳平比分的过程中,连续两次扑出对方球员的射门,为国安最终锁定胜局立下大功。

In statistics, efficiency is a measure of quality of an estimator, of an experimental design,[1] or of a hypothesis testing procedure.[2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound. An efficient estimator is characterized by having the smallest possible variance, indicating that there is a small deviance between the estimated value and the "true" value in the L2 norm sense.[1]

The relative efficiency of two procedures is the ratio of their efficiencies, although often this concept is used where the comparison is made between a given procedure and a notional "best possible" procedure. The efficiencies and the relative efficiency of two procedures theoretically depend on the sample size available for the given procedure, but it is often possible to use the asymptotic relative efficiency (defined as the limit of the relative efficiencies as the sample size grows) as the principal comparison measure.

Estimators

[edit]

The efficiency of an unbiased estimator, T, of a parameter θ is defined as [3]

where is the Fisher information of the sample. Thus e(T) is the minimum possible variance for an unbiased estimator divided by its actual variance. The Cramér–Rao bound can be used to prove that e(T) ≤ 1.

Efficient estimators

[edit]

An efficient estimator is an estimator that estimates the quantity of interest in some “best possible” manner. The notion of “best possible” relies upon the choice of a particular loss function — the function which quantifies the relative degree of undesirability of estimation errors of different magnitudes. The most common choice of the loss function is quadratic, resulting in the mean squared error criterion of optimality.[4]

In general, the spread of an estimator around the parameter θ is a measure of estimator efficiency and performance. This performance can be calculated by finding the mean squared error. More formally, let T be an estimator for the parameter θ. The mean squared error of T is the value , which can be decomposed as a sum of its variance and bias:

An estimator T1 performs better than an estimator T2 if .[5] For a more specific case, if T1 and T2 are two unbiased estimators for the same parameter θ, then the variance can be compared to determine performance. In this case, T2 is more efficient than T1 if the variance of T2 is smaller than the variance of T1, i.e. for all values of θ. This relationship can be determined by simplifying the more general case above for mean squared error; since the expected value of an unbiased estimator is equal to the parameter value, . Therefore, for an unbiased estimator, , as the term drops out for being equal to 0.[5]

If an unbiased estimator of a parameter θ attains for all values of the parameter, then the estimator is called efficient.[3]

Equivalently, the estimator achieves equality in the Cramér–Rao inequality for all θ. The Cramér–Rao lower bound is a lower bound of the variance of an unbiased estimator, representing the "best" an unbiased estimator can be.

An efficient estimator is also the minimum variance unbiased estimator (MVUE). This is because an efficient estimator maintains equality on the Cramér–Rao inequality for all parameter values, which means it attains the minimum variance for all parameters (the definition of the MVUE). The MVUE estimator, even if it exists, is not necessarily efficient, because "minimum" does not mean equality holds on the Cramér–Rao inequality.

Thus an efficient estimator need not exist, but if it does, it is the MVUE.

Finite-sample efficiency

[edit]

Suppose { Pθ | θ ∈ Θ } is a parametric model and X = (X1, …, Xn) are the data sampled from this model. Let T = T(X) be an estimator for the parameter θ. If this estimator is unbiased (that is, E[?T?] = θ), then the Cramér–Rao inequality states the variance of this estimator is bounded from below:

where is the Fisher information matrix of the model at point θ. Generally, the variance measures the degree of dispersion of a random variable around its mean. Thus estimators with small variances are more concentrated, they estimate the parameters more precisely. We say that the estimator is a finite-sample efficient estimator (in the class of unbiased estimators) if it reaches the lower bound in the Cramér–Rao inequality above, for all θ ∈ Θ. Efficient estimators are always minimum variance unbiased estimators. However the converse is false: There exist point-estimation problems for which the minimum-variance mean-unbiased estimator is inefficient.[6]

Historically, finite-sample efficiency was an early optimality criterion. However this criterion has some limitations:

  • Finite-sample efficient estimators are extremely rare. In fact, it was proved that efficient estimation is possible only in an exponential family, and only for the natural parameters of that family.[7]
  • This notion of efficiency is sometimes restricted to the class of unbiased estimators. (Often it is not.[8]) Since there are no good theoretical reasons to require that estimators are unbiased, this restriction is inconvenient. In fact, if we use mean squared error as a selection criterion, many biased estimators will slightly outperform the “best” unbiased ones. For example, in multivariate statistics for dimension three or more, the mean-unbiased estimator, sample mean, is inadmissible: Regardless of the outcome, its performance is worse than for example the James–Stein estimator.[citation needed]
  • Finite-sample efficiency is based on the variance, as a criterion according to which the estimators are judged. A more general approach is to use loss functions other than quadratic ones, in which case the finite-sample efficiency can no longer be formulated.[citation needed][dubiousdiscuss]

As an example, among the models encountered in practice, efficient estimators exist for: the mean μ of the normal distribution (but not the variance σ2), parameter λ of the Poisson distribution, the probability p in the binomial or multinomial distribution.

Consider the model of a normal distribution with unknown mean but known variance: { Pθ = N(θ, σ2) | θR }. The data consists of n independent and identically distributed observations from this model: X = (x1, …, xn). We estimate the parameter θ using the sample mean of all observations:

This estimator has mean θ and variance of σ2?/?n, which is equal to the reciprocal of the Fisher information from the sample. Thus, the sample mean is a finite-sample efficient estimator for the mean of the normal distribution.

Asymptotic efficiency

[edit]

Asymptotic efficiency requires Consistency (statistics), asymptotically normal distribution of the estimator, and an asymptotic variance-covariance matrix no worse than that of any other estimator.[9]

Example: Median

[edit]

Consider a sample of size drawn from a normal distribution of mean and unit variance, i.e.,

The sample mean, , of the sample , defined as

The variance of the mean, 1/N (the square of the standard error) is equal to the reciprocal of the Fisher information from the sample and thus, by the Cramér–Rao inequality, the sample mean is efficient in the sense that its efficiency is unity (100%).

Now consider the sample median, . This is an unbiased and consistent estimator for . For large the sample median is approximately normally distributed with mean and variance [10]

The efficiency of the median for large is thus

In other words, the relative variance of the median will be , or 57% greater than the variance of the mean – the standard error of the median will be 25% greater than that of the mean.[11]

Note that this is the asymptotic efficiency — that is, the efficiency in the limit as sample size tends to infinity. For finite values of the efficiency is higher than this (for example, a sample size of 3 gives an efficiency of about 74%).[citation needed]

The sample mean is thus more efficient than the sample median in this example. However, there may be measures by which the median performs better. For example, the median is far more robust to outliers, so that if the Gaussian model is questionable or approximate, there may advantages to using the median (see Robust statistics).

Dominant estimators

[edit]

If and are estimators for the parameter , then is said to dominate if:

  1. its mean squared error (MSE) is smaller for at least some value of
  2. the MSE does not exceed that of for any value of θ.

Formally, dominates if

holds for all , with strict inequality holding somewhere.

Relative efficiency

[edit]

The relative efficiency of two unbiased estimators is defined as[12]

Although is in general a function of , in many cases the dependence drops out; if this is so, being greater than one would indicate that is preferable, regardless of the true value of .

An alternative to relative efficiency for comparing estimators, is the Pitman closeness criterion. This replaces the comparison of mean-squared-errors with comparing how often one estimator produces estimates closer to the true value than another estimator.

Estimators of the mean of u.i.d. variables

[edit]

In estimating the mean of uncorrelated, identically distributed variables we can take advantage of the fact that the variance of the sum is the sum of the variances. In this case efficiency can be defined as the square of the coefficient of variation, i.e.,[13]

Relative efficiency of two such estimators can thus be interpreted as the relative sample size of one required to achieve the certainty of the other. Proof:

Now because we have , so the relative efficiency expresses the relative sample size of the first estimator needed to match the variance of the second.

Robustness

[edit]

Efficiency of an estimator may change significantly if the distribution changes, often dropping. This is one of the motivations of robust statistics – an estimator such as the sample mean is an efficient estimator of the population mean of a normal distribution, for example, but can be an inefficient estimator of a mixture distribution of two normal distributions with the same mean and different variances. For example, if a distribution is a combination of 98% N(μ, σ) and 2% N(μ, 10σ), the presence of extreme values from the latter distribution (often "contaminating outliers") significantly reduces the efficiency of the sample mean as an estimator of μ. By contrast, the trimmed mean is less efficient for a normal distribution, but is more robust (i.e., less affected) by changes in the distribution, and thus may be more efficient for a mixture distribution. Similarly, the shape of a distribution, such as skewness or heavy tails, can significantly reduce the efficiency of estimators that assume a symmetric distribution or thin tails.

Efficiency in statistics

[edit]

Efficiency in statistics is important because it allows the performance of various estimators to be compared. Although an unbiased estimator is usually favored over a biased one, a more efficient biased estimator can sometimes be more valuable than a less efficient unbiased estimator. For example, this can occur when the values of the biased estimator gathers around a number closer to the true value. Thus, estimator performance can be predicted easily by comparing their mean squared errors or variances.

Uses of inefficient estimators

[edit]

While efficiency is a desirable quality of an estimator, it must be weighed against other considerations, and an estimator that is efficient for certain distributions may well be inefficient for other distributions. Most significantly, estimators that are efficient for clean data from a simple distribution, such as the normal distribution (which is symmetric, unimodal, and has thin tails) may not be robust to contamination by outliers, and may be inefficient for more complicated distributions. In robust statistics, more importance is placed on robustness and applicability to a wide variety of distributions, rather than efficiency on a single distribution. M-estimators are a general class of estimators motivated by these concerns. They can be designed to yield both robustness and high relative efficiency, though possibly lower efficiency than traditional estimators for some cases. They can be very computationally complicated, however.

A more traditional alternative are L-estimators, which are very simple statistics that are easy to compute and interpret, in many cases robust, and often sufficiently efficient for initial estimates. See applications of L-estimators for further discussion. Inefficient statistics in this sense are discussed in detail in The Atomic Nucleus by R. D. Evans, written before the advent of computers, when efficiently estimating even the arithmetic mean of a sorted series of measurements was laborious.[14]

Hypothesis tests

[edit]

For comparing significance tests, a meaningful measure of efficiency can be defined based on the sample size required for the test to achieve a given task power.[15]

Pitman efficiency[16] and Bahadur efficiency (or Hodges–Lehmann efficiency)[17][18][19] relate to the comparison of the performance of statistical hypothesis testing procedures.

Experimental design

[edit]

For experimental designs, efficiency relates to the ability of a design to achieve the objective of the study with minimal expenditure of resources such as time and money. In simple cases, the relative efficiency of designs can be expressed as the ratio of the sample sizes required to achieve a given objective.[20]

See also

[edit]

Notes

[edit]
  1. ^ a b Everitt 2002, p. 128.
  2. ^ Nikulin, M.S. (2001) [1994], "Efficiency of a statistical procedure", Encyclopedia of Mathematics, EMS Press
  3. ^ a b Fisher, R (1921). "On the Mathematical Foundations of Theoretical Statistics". Philosophical Transactions of the Royal Society of London A. 222: 309–368. JSTOR 91208.
  4. ^ Everitt 2002, p. 128.
  5. ^ a b Dekking, F.M. (2007). A Modern Introduction to Probability and Statistics: Understanding Why and How. Springer. pp. 303–305. ISBN 978-1852338961.
  6. ^ Romano, Joseph P.; Siegel, Andrew F. (1986). Counterexamples in Probability and Statistics. Chapman and Hall. p. 194.
  7. ^ Van Trees, Harry L. (2013). Detection estimation and modulation theory. Kristine L. Bell, Zhi Tian (Second ed.). Hoboken, N.J. ISBN 978-1-299-66515-6. OCLC 851161356.{{cite book}}: CS1 maint: location missing publisher (link)
  8. ^ DeGroot; Schervish (2002). Probability and Statistics (3rd ed.). pp. 440–441.
  9. ^ Greene, William H. (2012). Econometric analysis (7th ed., international ed.). Boston: Pearson. ISBN 978-0-273-75356-8. OCLC 726074601.
  10. ^ Williams, D. (2001). Weighing the Odds. Cambridge University Press. p. 165. ISBN 052100618X.
  11. ^ Maindonald, John; Braun, W. John (2025-08-07). Data Analysis and Graphics Using R: An Example-Based Approach. Cambridge University Press. p. 104. ISBN 978-1-139-48667-5.
  12. ^ Wackerly, Dennis D.; Mendenhall, William; Scheaffer, Richard L. (2008). Mathematical statistics with applications (Seventh ed.). Belmont, CA: Thomson Brooks/Cole. p. 445. ISBN 9780495110811. OCLC 183886598.
  13. ^ Grubbs, Frank (1965). Statistical Measures of Accuracy for Riflemen and Missile Engineers. pp. 26–27.
  14. ^ Evans, Robley D. (1955). The Atomic Nucleus (PDF). McGraw Hill. pp. 746, Appendix G, p902 - Some Useful Inefficient Statistics.
  15. ^ Everitt 2002, p. 321.
  16. ^ Nikitin, Ya.Yu. (2001) [1994], "Efficiency, asymptotic", Encyclopedia of Mathematics, EMS Press
  17. ^ "Bahadur efficiency - Encyclopedia of Mathematics".
  18. ^ Arcones M. A. "Bahadur efficiency of the likelihood ratio test" preprint
  19. ^ Canay I. A. & Otsu, T. "Hodges–Lehmann Optimality for Testing Moment Condition Models"
  20. ^ Dodge, Y. (2006). The Oxford Dictionary of Statistical Terms. Oxford University Press. ISBN 0-19-920613-9.

References

[edit]

Further reading

[edit]
玉如意什么属相不能戴 顾问是什么意思 肝脑涂地是什么意思 西楚霸王是什么生肖 百福图挂在家里什么位置好
好机车是什么意思 裸婚是什么意思 外婆菜是什么菜做的 孕妇梦到被蛇咬是什么意思 三月18号是什么星座的
免是什么意思 耳朵痒是什么原因 剪短发什么发型好看 枸杞什么时候吃最好 泥鳅不能和什么一起吃
loewe是什么意思 乳酸脱氢酶偏低是什么意思 喝小分子肽有什么好处 高锰酸钾是什么东西 前列腺增生有什么危害
月经每次都推迟是什么原因hcv8jop9ns0r.cn 咳嗽能吃什么水果dajiketang.com 猛虎下山是什么意思hcv9jop3ns2r.cn 宝宝满周岁送什么礼物hcv9jop6ns2r.cn 河虾吃什么食物hcv9jop7ns1r.cn
月经不调去医院要做什么检查hcv8jop9ns5r.cn 局限是什么意思hcv7jop9ns2r.cn 什么是偏光眼镜hcv7jop4ns7r.cn 红酒是什么味道hcv7jop5ns5r.cn 什么渐渐什么hcv8jop9ns9r.cn
转氨酶偏高是什么原因hcv8jop3ns9r.cn 一朵什么hcv9jop3ns1r.cn 治股癣用什么药最好hcv8jop6ns5r.cn 晴水翡翠属于什么档次hcv9jop6ns4r.cn 6.10号是什么星座hcv8jop5ns1r.cn
吃鱼肝油有什么好处hcv9jop3ns2r.cn 强项是什么意思hcv9jop2ns9r.cn 特需病房是什么意思hcv8jop7ns6r.cn 为什么眼睛会肿hcv9jop1ns3r.cn 喝白糖水有什么好处和坏处hcv8jop9ns0r.cn
百度