全脂奶粉是什么意思| 89属什么| 窦性心律早期复极是什么意思| 重症肌无力用什么药| 五十知天命什么意思| 国师代表什么生肖| 食管反流用什么药效果好| 孕妇能吃什么| 全身而退是什么意思| 杏仁是什么树的果实| 话梅泡水喝有什么好处和坏处| 工作性质是什么意思| 蛇为什么怕鹅| 为什么要延迟退休| 除湿气吃什么| 三皇五帝是什么时期| 树上长的像灵芝的是什么| 昙花一现是什么意思| 傻人有傻福什么意思| 长的像蛇的鱼是什么鱼| 棕色用什么颜色调出来| n0是什么意思| 猪横利是什么| 伸舌头锻炼有什么好处| 五险一金包括什么| 狗狗吐黄水是什么原因| 碘伏有什么作用| 男性生殖器官叫什么| 睡觉张嘴是什么原因| 肺部肿瘤吃什么药| 血小板高是什么问题| 胆红素高是怎么回事有什么危害| 菩提子是什么树的种子| 新疆都有什么民族| 吃素对身体有什么好处| 淋巴细胞高是什么意思| 什么蔬菜含维生素c最多| 梦见一条小蛇是什么意思| 1997年属什么生肖| 鹿茸泡酒有什么功效| 螃蟹不能和什么水果一起吃| 吃什么能补充雌激素| 吃避孕药对身体有什么影响| 子宫内膜厚有什么症状| 充军是什么意思| 甘蓝是什么菜| 头昏脑胀是什么原因| 三月阳春好风光是什么生肖| 开背是什么意思| 色弱是什么意思| 虱子用什么药可以根除| 为什么疤痕会增生| 什么通便效果最快最好| 阴蒂是什么| 小儿积食吃什么药| 女生diy什么意思| 种草是什么意思| 人体缺钾会有什么症状| 什么叫肺纤维化| 谷氨酸高是什么原因| 翻江倒海是什么生肖| 诱因是什么意思| 肉五行属什么| 梦见自己死了预示什么| 番茄酱和番茄沙司有什么区别| 奶奶和孙女是什么关系| 多发性脂肪瘤是什么原因造成的| 三个龙念什么| 鱼泡是鱼的什么器官| 血痰是什么原因| 过渡句的作用是什么| 肾亏吃什么好| 肝内钙化斑是什么意思| 清点是什么意思| 什么季节减肥效果最快最好| 女人脚底有痣代表什么| 粉盒和硒鼓有什么区别| 家里进黄鼠狼是什么预兆| 通告是什么意思| 新西兰移民需要什么条件| 心脏长在什么位置| 心电图窦性心动过速是什么意思| 珍珠奶茶的珍珠是什么做的| 一个虫一个卑念什么| 脚气什么样| 威胁是什么意思| 手掌疼是什么原因| 鱼腥草长什么样| 白癜风的症状是什么| 穿山甲说了什么| 蛇什么时候出来活动| 胃酸是什么症状| 男人性功能不好吃什么药| 三叉神经吃什么药好| 大耳读什么| 外阴灼热用什么药| 夜间睡觉口干口苦是什么原因| 鼻翼长痘是什么原因| 月经淋漓不尽吃什么药| 老鼠为什么不碰粘鼠板| 什么时候最容易受孕| 手红是什么原因| 月经前一周是什么期| 牙根吸收是什么意思| 咳嗽吃什么| 耐药菌感染什么意思| 经常吃杏仁有什么好处| 排卵期出血有什么症状| 头晕呕吐是什么原因引起的| 右大腿上部疼痛是什么原因| 怀孕拉肚子吃什么药| 来月经有异味什么原因| 蝶变是什么意思| 狒狒是什么意思| 梦见自己光脚走路是什么意思| 水痘挂什么科| 羽丝绒是什么材料| 腰痛什么原因| 月亮象征着什么| 水泡型脚气用什么药| 肋骨外翻有什么危害| 84年属于什么生肖| 阴虱长什么样| 六安瓜片属于什么茶| 夏天梦见下雪是什么意思| 尿维生素c弱阳性是什么意思| 婴儿大便隐血阳性是什么意思| 全脂牛奶是什么意思| 冬字五行属什么| 磁力链接是什么| 混合性皮肤用什么护肤品比较好| 2月2号是什么星座| 一去不返是什么生肖| 三栖明星是什么意思| 背胀是什么原因| 梵是什么意思| 刺梨什么时候成熟| 花洒不出水什么原因| 12月是什么座| 男人不举是什么原因造成的| 什么是撤退性出血| 生死有命富贵在天什么意思| 吃什么减肥效果最好最快| 沥水是什么意思| 吃什么能缓解孕吐| sancanal是什么牌子| 哈哈是什么意思| 棉花是什么时候传入中国的| 查脂肪肝做什么检查| 超敏c反应蛋白正常说明什么| 宫寒吃什么好| 丞相和宰相有什么区别| 健身后应该吃什么| 淋巴发炎是什么症状| 利福喷丁和利福平有什么区别| 鼻子痒用什么药好| 大蒜不能和什么一起吃| 老爹鞋适合什么人穿| 病毒五项检查的是什么| 喝红茶有什么好处和坏处| 什么是应力| 秋天可以干什么| 剖腹产什么时候可以洗澡| 肝疼是什么原因| 挂失补办身份证需要什么| 诗韵是什么意思| 芈月传芈姝结局是什么| 7月1号是什么星座| 慢阻肺是什么原因引起的| 青蛇是什么蛇| 农历10月14日是什么星座| 铅是什么东西| 冷面是什么面| 疏朗是什么意思| 滑肠是什么意思| 内能与什么有关| 什么运动有助于长高| 蜜月是什么意思| 县级市市长什么级别| 慢性非萎缩性胃炎是什么意思| 百香果有什么功效| 91是什么网站| 米线配菜都有什么| 肾结石吃什么药好| 榴莲吃多了有什么坏处| 鼻子旁边的痣代表什么| 阑尾炎可以吃什么| 掌中宝是什么部位| 六堡茶是什么茶| 欲是什么生肖| 35岁属什么的| 中国人的祖先是什么人| 游泳前一定要做好什么运动| 什么叫痛风| 青海古代叫什么| 肌肉僵硬是什么原因| 米娜桑是什么意思| 浸猪笼是什么意思| 如果是什么意思| 海参多少头是什么意思| 飞蚊症是什么原因| pg是什么意思| 脚底心发热是什么原因| 甲亢吃什么盐好| 检查胃镜需要提前做什么准备| 吃什么补孕酮最快| 生理期量少是什么原因| 孤魂野鬼是什么生肖| 肾的主要功能是什么| 1948年属什么| 临界点是什么意思| 嘴唇不红润是什么原因| 牙龈出血吃什么| 梦见蛇是什么预兆| 淋巴细胞计数偏高是什么原因| 提肛有什么好处| 胃出血是什么症状| 山药跟淮山有什么区别| 冷暖自知是什么意思| 葬爱家族是什么意思| 心不在焉是什么意思| 病毒感染会有什么症状| rm是什么意思| 培土什么意思| 蛤蚧是什么动物| 响是什么意思| 藿香正气水治什么| 血红蛋白低吃什么可以补起来| 医保断了一个月有什么影响| 壮字五行属什么| 吃皮蛋不能和什么一起吃| 男人为什么喜欢女人| 为什么月亮是红色的| 腹水是什么| 支架后吃什么药| 淋巴细胞百分比偏高是什么意思| 孩子咳嗽有痰吃什么药| 女人严重口臭挂什么科| 六月一日是什么星座| 头发有点黄是什么原因| 现在什么最赚钱| 墨西哥人是什么人种| 七月十六是什么星座| 牙龈发炎是什么原因| 水痘挂什么科| 青筋明显是什么原因| 月经来了有血块是什么原因| 吃完避孕药有什么反应| 天气热适合吃什么| 投桃报李是什么生肖| 什么是电信诈骗| 什么叫全日制本科| 儿郎是什么意思| 囫囵吞枣是什么意思| 飧泄是什么意思| 什么叫生酮| 北京有什么好吃的美食| 什么晚霜比较好用| 无缝衔接什么意思| 宇五行属什么| 30年婚姻是什么婚| birkin是什么意思| 排卵是什么| 自食其力是什么意思| 百度Jump to content

ios10.3.2beta3怎么样 ios10.3.2beta3要不要升级

From Wikipedia, the free encyclopedia
百度 此役之前,恒大新赛季已经踢了4场正式比赛,亚冠两场都被逼平,超级杯中击败申花夺冠,但联赛第一轮输给了广州富力。

In statistics, binomial regression is a regression analysis technique in which the response (often referred to as Y) has a binomial distribution: it is the number of successes in a series of ?? independent Bernoulli trials, where each trial has probability of success ??.[1] In binomial regression, the probability of a success is related to explanatory variables: the corresponding concept in ordinary regression is to relate the mean value of the unobserved response to explanatory variables.

Binomial regression is closely related to binary regression: a binary regression can be considered a binomial regression with , or a regression on ungrouped binary data, while a binomial regression can be considered a regression on grouped binary data (see comparison).[2] Binomial regression models are essentially the same as binary choice models, one type of discrete choice model: the primary difference is in the theoretical motivation (see comparison). In machine learning, binomial regression is considered a special case of probabilistic classification, and thus a generalization of binary classification.

Example application

[edit]

In one published example of an application of binomial regression,[3] the details were as follows. The observed outcome variable was whether or not a fault occurred in an industrial process. There were two explanatory variables: the first was a simple two-case factor representing whether or not a modified version of the process was used and the second was an ordinary quantitative variable measuring the purity of the material being supplied for the process.

Specification of model

[edit]

The response variable Y is assumed to be binomially distributed conditional on the explanatory variables X. The number of trials n is known, and the probability of success for each trial p is specified as a function θ(X). This implies that the conditional expectation and conditional variance of the observed fraction of successes, Y/n, are

The goal of binomial regression is to estimate the function θ(X). Typically the statistician assumes , for a known function m, and estimates β. Common choices for m include the logistic function.[1]

The data are often fitted as a generalised linear model where the predicted values μ are the probabilities that any individual event will result in a success. The likelihood of the predictions is then given by

where 1A is the indicator function which takes on the value one when the event A occurs, and zero otherwise: in this formulation, for any given observation yi, only one of the two terms inside the product contributes, according to whether yi=0 or 1. The likelihood function is more fully specified by defining the formal parameters μi as parameterised functions of the explanatory variables: this defines the likelihood in terms of a much reduced number of parameters. Fitting of the model is usually achieved by employing the method of maximum likelihood to determine these parameters. In practice, the use of a formulation as a generalised linear model allows advantage to be taken of certain algorithmic ideas which are applicable across the whole class of more general models but which do not apply to all maximum likelihood problems.

Models used in binomial regression can often be extended to multinomial data.

There are many methods of generating the values of μ in systematic ways that allow for interpretation of the model; they are discussed below.

[edit]

There is a requirement that the modelling linking the probabilities μ to the explanatory variables should be of a form which only produces values in the range 0 to 1. Many models can be fitted into the form

Here η is an intermediate variable representing a linear combination, containing the regression parameters, of the explanatory variables. The function g is the cumulative distribution function (cdf) of some probability distribution. Usually this probability distribution has a support from minus infinity to plus infinity so that any finite value of η is transformed by the function g to a value inside the range 0 to 1.

In the case of logistic regression, the link function is the log of the odds ratio or logistic function. In the case of probit, the link is the cdf of the normal distribution. The linear probability model is not a proper binomial regression specification because predictions need not be in the range of zero to one; it is sometimes used for this type of data when the probability space is where interpretation occurs or when the analyst lacks sufficient sophistication to fit or calculate approximate linearizations of probabilities for interpretation.

Comparison with binary regression

[edit]

Binomial regression is closely connected with binary regression. If the response is a binary variable (two possible outcomes), then these alternatives can be coded as 0 or 1 by considering one of the outcomes as "success" and the other as "failure" and considering these as count data: "success" is 1 success out of 1 trial, while "failure" is 0 successes out of 1 trial. This can now be considered a binomial distribution with trial, so a binary regression is a special case of a binomial regression. If these data are grouped (by adding counts), they are no longer binary data, but are count data for each group, and can still be modeled by a binomial regression; the individual binary outcomes are then referred to as "ungrouped data". An advantage of working with grouped data is that one can test the goodness of fit of the model;[2] for example, grouped data may exhibit overdispersion relative to the variance estimated from the ungrouped data.

Comparison with binary choice models

[edit]

A binary choice model assumes a latent variable Un, the utility (or net benefit) that person n obtains from taking an action (as opposed to not taking the action). The utility the person obtains from taking the action depends on the characteristics of the person, some of which are observed by the researcher and some are not:

where is a set of regression coefficients and is a set of independent variables (also known as "features") describing person n, which may be either discrete "dummy variables" or regular continuous variables. is a random variable specifying "noise" or "error" in the prediction, assumed to be distributed according to some distribution. Normally, if there is a mean or variance parameter in the distribution, it cannot be identified, so the parameters are set to convenient values — by convention usually mean 0, variance 1.

The person takes the action, yn = 1, if Un > 0. The unobserved term, εn, is assumed to have a logistic distribution.

The specification is written succinctly as:

    • Un = βsn + εn
    • ε logistic, standard normal, etc.

Let us write it slightly differently:

    • Un = βsn ? en
    • e logistic, standard normal, etc.

Here we have made the substitution en = ?εn. This changes a random variable into a slightly different one, defined over a negated domain. As it happens, the error distributions we usually consider (e.g. logistic distribution, standard normal distribution, standard Student's t-distribution, etc.) are symmetric about 0, and hence the distribution over en is identical to the distribution over εn.

Denote the cumulative distribution function (CDF) of as and the quantile function (inverse CDF) of as

Note that

Since is a Bernoulli trial, where we have

or equivalently

Note that this is exactly equivalent to the binomial regression model expressed in the formalism of the generalized linear model.

If i.e. distributed as a standard normal distribution, then

which is exactly a probit model.

If i.e. distributed as a standard logistic distribution with mean 0 and scale parameter 1, then the corresponding quantile function is the logit function, and

which is exactly a logit model.

Note that the two different formalisms — generalized linear models (GLM's) and discrete choice models — are equivalent in the case of simple binary choice models, but can be extended if differing ways:

Latent variable interpretation / derivation

[edit]

A latent variable model involving a binomial observed variable Y can be constructed such that Y is related to the latent variable Y* via

The latent variable Y* is then related to a set of regression variables X by the model

This results in a binomial regression model.

The variance of ? can not be identified and when it is not of interest is often assumed to be equal to one. If ? is normally distributed, then a probit is the appropriate model and if ? is log-Weibull distributed, then a logit is appropriate. If ? is uniformly distributed, then a linear probability model is appropriate.

See also

[edit]

Notes

[edit]
  1. ^ a b Sanford Weisberg (2005). "Binomial Regression". Applied Linear Regression. Wiley-IEEE. pp. 253–254. ISBN 0-471-66379-4.
  2. ^ a b Rodríguez 2007, Chapter 3, p. 5.
  3. ^ Cox & Snell (1981), Example H, p. 91

References

[edit]

Further reading

[edit]


很什么很什么 adh医学上是什么意思 翠花是什么意思 心重是什么意思 紫药水是什么
脱敏什么意思 调理内分泌失调吃什么药效果好 海里有什么动物 谜底是什么意思 我想长胖点有什么办法
见招拆招下一句是什么 xrd是什么 植物光合作用产生什么 中元节是什么 百米12秒什么水平
手机为什么突然关机 什么食物含镁 乙肝核心抗体阳性是什么意思 低压高有什么症状 水平是什么意思
可好是什么意思hcv8jop1ns2r.cn 什么样的春光hcv7jop4ns5r.cn 猪血炒什么好吃hcv9jop2ns4r.cn 早上吃黄瓜有什么好处hcv9jop1ns7r.cn 爱出汗是什么原因女人hcv7jop9ns3r.cn
金玉良缘什么意思hcv9jop3ns0r.cn 交感神经是什么hcv7jop5ns4r.cn honor是什么牌子的手机hcv8jop5ns7r.cn 吃什么食物帮助睡眠hcv8jop3ns5r.cn 丰胸吃什么hcv7jop4ns5r.cn
老鼠疣长什么样子图片hcv9jop5ns0r.cn 没腿毛的男人代表什么hcv9jop2ns1r.cn 狼吃什么hcv7jop9ns5r.cn 狗狗睡姿代表什么图解baiqunet.com 许莫氏结节是什么意思hcv7jop9ns2r.cn
wdf是什么意思hcv8jop5ns5r.cn 疝气吃什么药效果好hcv8jop5ns6r.cn 什么是熵hcv9jop3ns3r.cn 腰疼挂什么科hcv7jop5ns0r.cn 晚上睡觉手麻木是什么原因cl108k.com
百度