嘴角起痘是什么原因| 摆地摊卖什么最赚钱而且很受欢迎| 粉红粉红的什么| 生物工程专业学什么| 遗传物质是什么| 高危型hpv阳性是什么意思| pph是什么材料| 什么是佝偻病| 咳嗽完想吐是什么原因| 绝命是什么意思| 黄瓜为什么会发苦| 傻狍子为什么叫傻狍子| 高压高低压低是什么原因| 什么方法| 皮试是什么| 农历5月是什么月| 副乳挂什么科| 为什么现在不建议输液| 海军蓝是什么颜色| 接盘是什么意思| 12月23日什么星座| hm什么牌子| 附骨疽是什么病| 梦到水是什么意思| 四川酸菜是什么菜| 什么是熊猫血| 牵牛花什么时候开| 滑膜炎吃什么药好| 儿童喝蜂蜜水有什么好处和坏处| 溶血是什么意思| 血糖30多有什么危险| 老虎菜为什么叫老虎菜| 化疗后吃什么增强免疫力| 我国计划生育什么时候开始| 工具人什么意思| 总打嗝是什么原因| 七寸是什么意思| 肾上腺素高会导致什么| 相敬如宾什么意思| 附件是什么意思| 雪霁是什么意思| 右手手背有痣代表什么| 石斛什么价格| 手指甲白是什么原因| 经常过敏是什么原因| 肝郁化火吃什么中成药| 小叶增生和乳腺增生有什么区别| 吃了小龙虾不能吃什么| 水满则溢月盈则亏是什么意思| 强龙不压地头蛇是什么生肖| 固本培元什么意思| 什么情况下需要根管治疗| 放屁多是什么原因引起的| 息肉样病变是什么意思| 脚底脱皮用什么药| 2024年是什么年| 6月20号是什么星座| 百合有什么功效和作用| 出煞是什么意思| 尿糖一个加号是什么意思| 什么时候测试怀孕最准确的| 摩卡棕是什么颜色| 孕妇吃梨有什么好处| 肠易激综合征中医叫什么| 尿亚硝酸盐阳性是什么意思| 饷是什么意思| 貌不惊人是什么意思| 白骨精是什么动物| 什么伤医院不能治| 乳腺结节是什么| 什么都值得买| 观音菩萨原名叫什么名| 100是什么意思| 两小儿辩日告诉我们什么道理| 三叉神经痛挂什么科就诊| 红颜什么意思| 水泡用什么药膏最有效| 智齿长什么样子图片| 六亲不认什么意思| 金脸银脸代表什么人物| 开背是什么意思| 产妇刚生完孩子适合吃什么| 青筋暴起是什么原因| 休学什么意思| 卧轨什么意思| 神经病和精神病有什么区别| 肌电图主要检查什么病| 口苦口臭吃什么药效果最佳| 梦见床代表什么预兆| 胆固醇低吃什么| 病种是什么意思| 修身养性下一句是什么| 声音嘶哑吃什么药好| 补气吃什么食物| 静若幽兰什么意思| 双向情感障碍是什么意思| 6月8日是什么星座| 地中海贫血什么意思| 吃了紧急避孕药会有什么反应| 胎儿头偏小是什么原因引起的| 奶粉水解什么意思| 尿少是什么原因| 马齿笕有什么功效| 陌然是什么意思| zn是什么意思| 宫颈液基细胞学检查是什么| 好记性不如烂笔头是什么意思| 精神障碍是什么病| 司马迁属什么生肖| 丙肝是什么| 阿鼻地狱是什么意思| 嗓子总有痰吃什么药| 高密度脂蛋白高是什么原因| 卵泡刺激素是什么意思| 厚颜无耻是什么生肖| 结婚年数代表什么婚| 双皮奶是什么做的| 离歌是什么意思| 脚底板痛什么原因| 动手术后吃什么对伤口恢复比较快| 容易受惊吓是什么原因| 籽料是什么意思| 头油是什么原因引起的| 吹毛求疵什么意思| 膀胱炎吃什么药最见效| 什么时候喝咖啡能减肥| 怀孕吃叶酸有什么用| 肺活量不足是什么症状| 官方旗舰店是什么意思| 玉米须有什么功效| 西席是什么意思| 什么东西补铁效果好而且最快| 肚脐中间疼是什么原因| 痔疮吃什么药好的快| 伤口出水是什么原因| 下面有味道用什么药| 百分比是什么意思| 狮子吃什么| 倚老卖老什么意思| 1973年是什么年| 小孩子发烧手脚冰凉是什么原因| 廿读什么| 79是什么意思| 便秘吃什么药效果好| orange是什么颜色| 什么魏什么赵| igg抗体是什么意思| 考试吃什么| 记过处分有什么影响| 金舆是什么意思| 万箭穿心代表什么生肖| 好朋友是什么意思| 血糖吃什么水果| 痱子用什么药膏最有效| 什么叫辟谷| 三点水的字大多与什么有关| 杜仲是什么| 颈椎酸胀是什么原因| 心率变异性是什么意思| 膝关节痛什么原因| 拔完智齿吃什么食物好| 夜代表什么生肖| dostinex是什么药| 肠胃炎可以吃什么药| 咽喉痛什么原因| 祖师爷是什么意思| 40min是什么意思| 舌头尖麻木是什么原因| 心理咨询挂什么科| 孩子老是流鼻血是什么原因| 膝盖发软无力是什么原因| 耐力板是什么材质| 捐精有什么要求| 玛丽苏是什么意思| 为什么不能随便看手相| 独在异乡为异客异是什么意思| 扁食是什么| 小苏打可以用什么代替| 张衡发明了什么| 虾和什么蔬菜搭配最好| 肠胃消化不好吃什么食物| 感光食物是什么意思| 什么原因导致打嗝| 为什么会心衰| 鬼打墙是什么意思| 些几 是什么意思| 相对而行是什么意思| 梦见尸体是什么意思| 2002年属什么生肖| 憨厚是什么意思| 前庭神经炎吃什么药| 白里透红的透是什么意思| 眼睛痒是什么原因引起的| 耳石症是什么原因| 首鼠两端是什么意思| 小麦和大麦有什么区别| 地支是什么意思| 水潴留是什么意思| 明知故犯的故是什么意思| 禾字五行属什么的| 养狗人容易得什么病| 洋地黄中毒首选什么药| 什么时间吃水果最好| 五一年属什么生肖| 隔夜茶为什么不能喝| 纯钛是什么材质| 头孢加酒有什么反应| xgrq是什么烟| resp是什么| 经常性偏头疼是什么原因| 觉悟是什么意思| 一个彭一个瓦念什么| 亦金读什么| 胸椎退变是什么意思| 血清铁蛋白低说明什么| 羟丁酸脱氢酶高是什么原因| 眼睛肿痛什么原因| 一月10号是什么星座| 怀孕做nt检查什么| 11月27是什么星座| 婚检都检查什么项目| 亲友是什么意思| 月经9天了还没干净是什么原因| 荨麻疹什么样| 为什么吃辣的就拉肚子| 白内障的症状是什么| 石棉是什么东西| 垂体催乳素高是什么原因| 地震为什么会发生| 一什么秋千| nos是什么意思| 膝关节退行性变是什么意思| 泌尿内科主要看什么病| 最近有什么病毒感染| 此物非彼物是什么意思| 右上眼皮跳是什么预兆| 广东有什么好玩的地方| 睡觉起来嘴巴苦是什么原因| 胎盘下缘覆盖宫颈内口是什么意思| 免疫球蛋白g是什么意思| 什么运动瘦大腿| 反酸吃什么马上能缓解| 哺乳期吃什么下奶| 踮脚尖有什么好处| 血糖仪h1是什么意思| 喻字五行属什么| 世界杯是什么时候| 菊花是什么季节开的| cl是什么元素| 白羊座上升星座是什么| 萎缩性胃炎伴糜烂吃什么药| 十一月四日是什么星座| 早上起床眼睛浮肿是什么原因| 蜱虫咬了什么症状| 下巴长闭口是什么原因| 咕噜是什么意思| 鱼饼是什么做的| 龙眼树上的臭虫叫什么| 子宫肌瘤有什么症状表现| 无缘无故流鼻血是什么原因| 房颤是什么| 锶是什么意思| 服装属于五行什么行业| 多吃核桃有什么好处和坏处| 百度Jump to content

安晓东——打造宁夏会展的另一道风景-3月24日

From Wikipedia, the free encyclopedia
百度 此次成功申报数据科学与大数据技术专业的,除了安徽信息工程学院、合肥师范学院,还有安徽科技学院、阜阳师范学院、池州学院等。

A permutation test (also called re-randomization test or shuffle test) is an exact statistical hypothesis test. A permutation test involves two or more samples. The (possibly counterfactual) null hypothesis is that all samples come from the same distribution . Under the null hypothesis, the distribution of the test statistic is obtained by calculating all possible values of the test statistic under possible rearrangements of the observed data. Permutation tests are, therefore, a form of resampling.

Permutation tests can be understood as surrogate data testing where the surrogate data under the null hypothesis are obtained through permutations of the original data.[1]

In other words, the method by which treatments are allocated to subjects in an experimental design is mirrored in the analysis of that design. If the labels are exchangeable under the null hypothesis, then the resulting tests yield exact significance levels; see also exchangeability. Confidence intervals can then be derived from the tests. The theory has evolved from the works of Ronald Fisher and E. J. G. Pitman in the 1930s.

Permutation tests should not be confused with randomized tests.[2]

Method

[edit]
Animation of a permutation test being computed on sets of 4 and 5 random values. The 4 values in red are drawn from one distribution, and the 5 values in blue from another; we'd like to test whether the mean values of the two distributions are different. The hypothesis is that the mean of the first distribution is higher than the mean of the second; the null hypothesis is that both groups of samples are drawn from the same distribution. There are 126 distinct ways to put 4 values into one group and 5 into another (9-choose-4 or 9-choose-5). Of these, one is per the original labeling, and the other 125 are "permutations" that generate the histogram of mean differences shown. The p-value of the hypothesis is estimated as the proportion of permutations that give a difference as large or larger than the difference of means of the original samples. In this example, the null hypothesis cannot be rejected at the p = 5% level.

To illustrate the basic idea of a permutation test, suppose we collect random variables and for each individual from two groups and whose sample means are and , and that we want to know whether and come from the same distribution. Let and be the sample size collected from each group. The permutation test is designed to determine whether the observed difference between the sample means is large enough to reject, at some significance level, the null hypothesis H that the data drawn from is from the same distribution as the data drawn from .

The test proceeds as follows. First, the difference in means between the two samples is calculated: this is the observed value of the test statistic, .

Next, the observations of groups and are pooled, and the difference in sample means is calculated and recorded for every possible way of dividing the pooled values into two groups of size and (i.e., for every permutation of the group labels A and B). The set of these calculated differences is the exact distribution of possible differences (for this sample) under the null hypothesis that group labels are exchangeable (i.e., are randomly assigned).

The one-sided p-value of the test is calculated as the proportion of sampled permutations where the difference in means was greater than . The two-sided p-value of the test is calculated as the proportion of sampled permutations where the absolute difference was greater than . Many implementations of permutation tests require that the observed data itself be counted as one of the permutations so that the permutation p-value will never be zero.[3]

Alternatively, if the only purpose of the test is to reject or not reject the null hypothesis, one could sort the recorded differences, and then observe if is contained within the middle % of them, for some significance level . If it is not, we reject the hypothesis of identical probability curves at the significance level.

To exploit variance reduction with paired samples, a paired permutation test must be applied, see paired difference test. This is equivalent to performing a normal, unpaired permutation test, but restricting the set of valid permutations to only those which respect the paired nature of the data by forbidding both halves of any pair from being included in the same partition. In the specific but common case where the test statistic is the mean, this is also equivalent to computing a single set of differences of each pair and iterating over all of the sign-reversals instead of the usual partitioning approach.

Relation to parametric tests

[edit]

Permutation tests are a subset of non-parametric statistics. Assuming that our experimental data come from data measured from two treatment groups, the method simply generates the distribution of mean differences under the assumption that the two groups are not distinct in terms of the measured variable. From this, one then uses the observed statistic ( above) to see to what extent this statistic is special, i.e., the likelihood of observing the magnitude of such a value (or larger) if the treatment labels had simply been randomized after treatment.

In contrast to permutation tests, the distributions underlying many popular "classical" statistical tests, such as the t-test, F-test, z-test, and χ2 test, are obtained from theoretical probability distributions. Fisher's exact test is an example of a commonly used parametric test for evaluating the association between two dichotomous variables. When sample sizes are very large, the Pearson's chi-square test will give accurate results. For small samples, the chi-square reference distribution cannot be assumed to give a correct description of the probability distribution of the test statistic, and in this situation the use of Fisher's exact test becomes more appropriate.

Permutation tests exist in many situations where parametric tests do not (e.g., when deriving an optimal test when losses are proportional to the size of an error rather than its square). All simple and many relatively complex parametric tests have a corresponding permutation test version that is defined by using the same test statistic as the parametric test, but obtains the p-value from the sample-specific permutation distribution of that statistic, rather than from the theoretical distribution derived from the parametric assumption. For example, it is possible in this manner to construct a permutation t-test, a permutation test of association, a permutation version of Aly's test for comparing variances and so on.

The major drawbacks to permutation tests are that they

  • Can be computationally intensive and may require "custom" code for difficult-to-calculate statistics. This must be rewritten for every case.
  • Are primarily used to provide a p-value. The inversion of the test to get confidence regions/intervals requires even more computation.

Advantages

[edit]

Permutation tests exist for any test statistic, regardless of whether or not its distribution is known. Thus one is always free to choose the statistic which best discriminates between hypothesis and alternative and which minimizes losses.

Permutation tests can be used for analyzing unbalanced designs[4] and for combining dependent tests on mixtures of categorical, ordinal, and metric data (Pesarin, 2001) [citation needed]. They can also be used to analyze qualitative data that has been quantitized (i.e., turned into numbers). Permutation tests may be ideal for analyzing quantitized data that do not satisfy statistical assumptions underlying traditional parametric tests (e.g., t-tests, ANOVA),[5] see PERMANOVA.

Before the 1980s, the burden of creating the reference distribution was overwhelming except for data sets with small sample sizes.

Since the 1980s, the confluence of relatively inexpensive fast computers and the development of new sophisticated path algorithms applicable in special situations made the application of permutation test methods practical for a wide range of problems. It also initiated the addition of exact-test options in the main statistical software packages and the appearance of specialized software for performing a wide range of uni- and multi-variable exact tests and computing test-based "exact" confidence intervals.

Limitations

[edit]

An important assumption behind a permutation test is that the observations are exchangeable under the null hypothesis. An important consequence of this assumption is that tests of difference in location (like a permutation t-test) require equal variance under the normality assumption. In this respect, the classic permutation t-test shares the same weakness as the classical Student's t-test (the Behrens–Fisher problem). This can be addressed in the same way the classic t-test has been extended to handle unequal variances: by employing the Welch statistic with Satterthwaite adjustment to the degrees of freedom.[6] A third alternative in this situation is to use a bootstrap-based test. Statistician Phillip Good explains the difference between permutation tests and bootstrap tests the following way: "Permutations test hypotheses concerning distributions; bootstraps test hypotheses concerning parameters. As a result, the bootstrap entails less-stringent assumptions."[7] Bootstrap tests are not exact. In some cases, a permutation test based on a properly studentized statistic can be asymptotically exact even when the exchangeability assumption is violated.[8] Bootstrap-based tests can test with the null hypothesis and, therefore, are suited for performing equivalence testing.

Monte Carlo testing

[edit]

An asymptotically equivalent permutation test can be created when there are too many possible orderings of the data to allow complete enumeration in a convenient manner. This is done by generating the reference distribution by Monte Carlo sampling, which takes a small (relative to the total number of permutations) random sample of the possible replicates. The realization that this could be applied to any permutation test on any dataset was an important breakthrough in the area of applied statistics. The earliest known references to this approach are Eden and Yates (1933) and Dwass (1957).[9][10] This type of permutation test is known under various names: approximate permutation test, Monte Carlo permutation tests or random permutation tests.[11]

After random permutations, it is possible to obtain a confidence interval for the p-value based on the Binomial distribution, see Binomial proportion confidence interval. For example, if after random permutations the p-value is estimated to be , then a 99% confidence interval for the true (the one that would result from trying all possible permutations) is .

On the other hand, the purpose of estimating the p-value is most often to decide whether , where is the threshold at which the null hypothesis will be rejected (typically ). In the example above, the confidence interval only tells us that there is roughly a 50% chance that the p-value is smaller than 0.05, i.e. it is completely unclear whether the null hypothesis should be rejected at a level .

If it is only important to know whether for a given , it is logical to continue simulating until the statement can be established to be true or false with a very low probability of error. Given a bound on the admissible probability of error (the probability of finding that when in fact or vice versa), the question of how many permutations to generate can be seen as the question of when to stop generating permutations, based on the outcomes of the simulations so far, in order to guarantee that the conclusion (which is either or ) is correct with probability at least as large as . ( will typically be chosen to be extremely small, e.g. 1/1000.) Stopping rules to achieve this have been developed[12] which can be incorporated with minimal additional computational cost. In fact, depending on the true underlying p-value it will often be found that the number of simulations required is remarkably small (e.g. as low as 5 and often not larger than 100) before a decision can be reached with virtual certainty.

Example tests

[edit]

See also

[edit]

Literature

[edit]

Original references:

  • Fisher, R.A. (1935) The Design of Experiments, New York: Hafner
  • Pitman, E. J. G. (1937) "Significance tests which may be applied to samples from any population", Royal Statistical Society Supplement, 4: 119-130 and 225-32 (parts I and II). JSTOR 2984124 JSTOR 2983647
  • Pitman, E. J. G. (1938). "Significance tests which may be applied to samples from any population. Part III. The analysis of variance test". Biometrika. 29 (3–4): 322–335. doi:10.1093/biomet/29.3-4.322.

Modern references:

Computational methods:

Current research on permutation tests

[edit]

References

[edit]
  1. ^ Moore, Jason H. "Bootstrapping, permutation testing and the method of surrogate data." Physics in Medicine & Biology 44.6 (1999): L11.
  2. ^ Onghena, Patrick (2025-08-06), Berger, Vance W. (ed.), "Randomization Tests or Permutation Tests? A Historical and Terminological Clarification", Randomization, Masking, and Allocation Concealment (1 ed.), Boca Raton, FL: Chapman and Hall/CRC, pp. 209–228, doi:10.1201/9781315305110-14, ISBN 978-1-315-30511-0, retrieved 2025-08-06
  3. ^ Phipson, Belinda; Smyth, Gordon K (2010). "Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn". Statistical Applications in Genetics and Molecular Biology. 9 (1) 39. arXiv:1603.05766. doi:10.2202/1544-6115.1585. PMID 21044043. S2CID 10735784.
  4. ^ "Invited Articles" (PDF). Journal of Modern Applied Statistical Methods. 1 (2): 202–522. Fall 2011. Archived from the original (PDF) on May 5, 2003.
  5. ^ Collingridge, Dave S. (11 September 2012). "A Primer on Quantitized Data Analysis and Permutation Testing". Journal of Mixed Methods Research. 7 (1): 81–97. doi:10.1177/1558689812454457. S2CID 124618343.
  6. ^ Janssen, Arnold (1997). "Studentized Permutation Tests for Non-I.i.d. Hypotheses and the Generalized Behrens-Fisher Problem". Statistics & Probability Letters. 36 (1): 9–21. doi:10.1016/s0167-7152(97)00043-6.
  7. ^ Good, Phillip I. (2005). Resampling Methods: A Practical Guide to Data Analysis (3rd ed.). Birkh?user. ISBN 978-0817643867.
  8. ^ Chung, EY; Romano, JP (2013). "Exact and asymptotically robust permutation tests". The Annals of Statistics. 41 (2): 487–507. arXiv:1304.5939. doi:10.1214/13-AOS1090.
  9. ^ Eden, T; Yates, F (1933). "On the validity of Fisher's z test when applied to an actual example of non-normal data. (With five text-figures.)". The Journal of Agricultural Science. 23 (1): 6–17. doi:10.1017/S0021859600052862. S2CID 84802682. Retrieved 3 June 2021.
  10. ^ Dwass, Meyer (1957). "Modified Randomization Tests for Nonparametric Hypotheses". Annals of Mathematical Statistics. 28 (1): 181–187. doi:10.1214/aoms/1177707045. JSTOR 2237031.
  11. ^ Thomas E. Nichols, Andrew P. Holmes (2001). "Nonparametric Permutation Tests For Functional Neuroimaging: A Primer with Examples" (PDF). Human Brain Mapping. 15 (1): 1–25. doi:10.1002/hbm.1058. hdl:2027.42/35194. PMC 6871862. PMID 11747097.
  12. ^ Gandy, Axel (2009). "Sequential implementation of Monte Carlo tests with uniformly bounded resampling risk". Journal of the American Statistical Association. 104 (488): 1504–1511. arXiv:math/0612488. doi:10.1198/jasa.2009.tm08368. S2CID 15935787.
白头发有什么方法变黑 炎字五行属什么 什么是pp材质 卫生间除臭用什么最好 牛肉和什么不能一起吃
髂胫束在什么位置 下馆子什么意思 蓝莓泡酒有什么功效 消化性溃疡吃什么药好 巴宝莉是什么品牌
盐酸达泊西汀片是什么药 5月26是什么星座 经常长溃疡是什么原因引起的 金屋藏娇定富贵是什么生肖 火乐念什么
福祸相依什么意思 茶寿为什么是108岁 体寒是什么意思 接骨草长什么样 奉子成婚是什么意思
行尸走肉是什么动物hcv9jop3ns0r.cn 精神卫生科看什么病hcv9jop6ns6r.cn vte是什么zhiyanzhang.com 糖尿病人能吃什么水果hcv8jop7ns0r.cn 看胃挂什么科室hcv8jop6ns6r.cn
什么灯不会亮cj623037.com 导滞是什么意思baiqunet.com 牙齿松动什么原因hcv7jop5ns2r.cn 三伏天是什么hcv8jop6ns0r.cn 爆冷是什么意思hcv9jop2ns1r.cn
最近天气为什么这么热hkuteam.com 阿米替林片是治什么病的hcv7jop6ns8r.cn 梦见好多死鱼是什么意思hcv8jop2ns7r.cn 大脑供血不足吃什么药hcv8jop0ns0r.cn 家财万贯是什么生肖imcecn.com
经常梦遗是什么原因hcv9jop1ns9r.cn 哈喇味是什么味道520myf.com 尽善尽美是什么意思hcv9jop2ns9r.cn 立碑有什么讲究和忌讳hcv9jop1ns2r.cn 社会保险是什么意思hcv9jop2ns0r.cn
百度