口甲读什么| 东莞有什么区| 门对门风水有什么说法| 16年属什么| 小孩一到晚上就发烧是什么原因| 维生素d和维生素ad有什么区别| 什么方法减肥最快| 荒唐是什么意思| 改编是什么意思| 临汾有什么大学| 什么是近视| 梦到下雨是什么意思| 财神爷供奉什么供品| 英五行属什么| 人为什么会死| 泡泡纱是什么面料| 沉香是什么东西| 为什么月经不来| 料酒是什么酒| 倒贴是什么意思| 火腿是什么动物的腿| 6月20日是什么节日| 为什么拉稀| 前列腺钙化吃什么药| 女生为什么会喷水| 维生素d滴剂什么时候吃最好| 中元节与什么生肖有关| 林格液又叫什么| 吃什么水果对肝好| 炖鸡放什么调料好吃| 途明是什么档次的包| 中医是什么| 吃东西容易呛到是什么原因| 旁风草长什么样| 男孩过生日送什么礼物好| 奴役是什么意思| 乳房有溢液是什么原因| 皮肤痒吃什么药| 11月2日什么星座| 玄学什么意思| 晋升是什么意思| 儿童感冒吃什么药| 为什么老是说梦话| zoom是什么| 小便少是什么原因| 黑吃黑是什么意思| 囊肿是什么病严重吗| 心电图窦性心动过速是什么意思| 米田共是什么意思| 少年白头发是什么原因| 郡肝是什么部位| 为什么要冬病夏治| mv是什么意思| 智齿是什么意思| 为什么便秘| 无水奶油是什么| 荨麻疹是什么症状| 12月10号什么星座| 牙齿一碰就疼是什么原因| 孕妇梦见摘桃子是什么意思| 兔和什么属相最配| 避孕套长什么样| 早上口干苦是什么原因| 天秤座女生什么性格| 查微量元素挂什么科| 蓝精灵是什么药| 梦见猫吃老鼠什么意思| 有什么办法可以怀孕| 凹儿念什么| spf50是什么意思| 痔疮是什么感觉| 风寒感冒喉咙痛吃什么药| 田七与三七有什么区别| 洁字五行属什么| 栀子花叶子发黄是什么原因| 笑面虎什么意思| 爱是什么| 6月20号是什么星座| 黄晓明的老婆叫什么名字| 县公安局局长什么级别| 红糖荷包蛋有什么功效| 中性粒细胞计数偏高是什么意思| 上火了吃什么水果降火最快| 猕猴桃什么时候上市| 小赤佬是什么意思| 覅什么意思| 溜肩是什么意思| 月经量少要吃什么调理| 副词什么意思| b超是检查什么的| 喝酒对身体有什么危害| ca724是什么意思| 少一个睾丸有什么影响| 鳄梨是什么水果| 大白条是什么鱼| 输血四项检查是什么| 雅号是什么意思| 1963年属什么生肖| 草莓是什么季节| 胃总疼是什么原因| 什么水果治便秘| 血脂粘稠有什么症状| 什么是虚荣心| 母亲节在什么时候| 李逵代表什么生肖| 龙眼是什么| 十一月是什么星座| 腮腺炎是什么症状| 胃体隆起是什么意思| 熬夜伤什么| 骑木驴是什么意思| 右眼一直跳是什么原因| 芈月和秦始皇什么关系| 宫颈炎盆腔炎吃什么药效果最好| 国家电网需要什么专业| 心脏彩超能查出什么| 肝胆脾挂什么科| 意大利用的什么货币| 犯六冲是什么意思| 四大皆空是什么意思| 什么是无性婚姻| 为什么不建议开眼角| 属蛇的本命佛是什么佛| 电波系是什么意思| 有期徒刑是什么意思| 什么牛什么毛| 芦芽是什么| 怀孕3天有什么症状| 酮体是什么| 榴莲是什么季节的水果| 杯酒释兵权是什么意思| 吃饭后胃疼是什么原因| 前轮轴承坏了会有什么症状| 胸是什么| 转氨酶偏低是什么原因| 傻缺什么意思| 喝山楂水有什么好处和坏处| 头晕是什么症状引起的| 稍纵即逝什么意思| 紫绀是什么症状| 皮肤黑穿什么颜色的衣服显白| 什么什么不周| 为什么用| 化疗后白细胞低吃什么补得快| 为什么胃疼| 留置针是什么| 风的孩子叫什么| 柿子什么时候成熟| 内心丰盈是什么意思| 睡觉掉床下是什么预兆| 喝酒后头疼吃什么药| 胸腔积液是什么原因造成的| 调羹是什么意思| 哈密瓜是什么季节的水果| 健脾胃吃什么药| 什么茶降血压效果最好| 什么是hpv| 尿素酶阳性什么意思| 瘁是什么意思| 喝什么去火| 猫驱虫药什么牌子好| 指甲凹凸不平是什么原因| 大象的耳朵像什么一样| 甲状腺减退什么症状| club monaco是什么牌子| 放下执念是什么意思| andy是什么意思| 吃生蚝有什么好处| 一月十九号是什么星座| 庙祝是什么意思| 冰箱为什么不制冷了| 窦性心律什么意思| knee是什么意思| 入睡困难吃什么药效果最好| 疣体是什么病| 什么叫偏光眼镜| 1979属什么生肖| 什么补气血| vb610是什么药| 女孩小名叫什么好| 什么是氧化剂| 三阳开泰是什么生肖| 啤酒是什么酿造的| 怀孕期间吃什么对胎儿发育好| 什么相马| 起床头疼是什么原因| 蚊子的幼虫叫什么| CNN什么意思| 次月什么意思| 马蜂泡酒有什么功效| 嘴巴里发苦是什么原因| 幽门杆菌吃什么药最好| 奶黄包的馅是什么做的| 智能手环是干什么用的| 吐白沫是什么原因| 满身红点是什么病| 血小板压积偏高是什么原因| 想当演员考什么学校| 时值是什么意思| 腮帮子疼吃什么药| 脚疼是什么原因| 声带小结是什么意思| 内分泌失调吃什么药好| 酒蒙子是什么意思| 类风湿关节炎不能吃什么食物| 伤口拆线挂什么科| 霸王龙的后代是什么| 肌酐高有什么症状| m0是什么意思| 占卜什么意思| 卧推80公斤什么水平| 痰多吃什么好| 职业暴露是什么意思| 嘴唇为什么会肿起来| 张良为什么不救韩信| 尿酸高肌酐高是什么原因呢| 母亲节送什么颜色的康乃馨| 人流后什么时候来月经| 肝内高回声结节是什么意思| 阴道细菌感染用什么药| 口腔医学学什么| 甲功五项挂什么科| 人活着的意义是什么| 提携是什么意思| 勇者胜的上半句是什么| 牙龈肿痛吃什么药效果好| 肩胛骨缝疼挂什么科| 上午九点到十一点是什么时辰| 准生证需要什么材料| 扁平化管理是什么意思| 肝肾亏虚吃什么药| 烧仙草粉是什么做的| 大腿外侧疼痛是什么原因| 礼物送什么| z是什么火车| 月经来了同房会导致什么后果| 6月3号是什么星座| 紫藤花什么时候开花| balmain什么档次| 扁桃体炎吃什么药最好效果好| 碘伏和碘酒有什么区别| 胎毛什么时候脱落| 酸菜吃多了有什么危害| 尖锐湿疣是什么样的| 阑尾炎疼吃什么药| 罄竹难书的罄什么意思| 头晕头疼是什么原因| 九六年属什么的| 拉肚子吃什么药最有效| 非甾体是什么意思| 脱毛膏的原理是什么| 嫪毐是什么意思| 璀璨人生是什么意思| 人心果什么时候成熟| 日丙念什么| 拔完智齿需要注意什么| 腰痛贴什么膏药最好| charleskeith什么牌子| 男人阳虚吃什么药最好| white是什么意思颜色| mcu是什么| 拉脱水是什么症状| 单核细胞偏高是什么原因| 十一月二十八是什么星座| 百度Jump to content

希拉里“邮件门”揭美选举黑幕

From Wikipedia, the free encyclopedia
百度   美国伍德罗?威尔逊中心基辛格美中关系研究所高级研究员芮效俭此前接受记者采访时表示,特朗普政府习惯于将经济关系视为压制其他国家的一种手段,这不应成为全球经贸关系的主流,美国目前过于强调经济的压制作用,而不够重视全球经贸关系的互利作用。

In robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations). Robust regression methods are designed to limit the effect that violations of assumptions by the underlying data-generating process have on regression estimates.

For example, least squares estimates for regression models are highly sensitive to outliers: an outlier with twice the error magnitude of a typical observation contributes four (two squared) times as much to the squared error loss, and therefore has more leverage over the regression estimates. The Huber loss function is a robust alternative to standard square error loss that reduces outliers' contributions to the squared error loss, thereby limiting their impact on regression estimates.

Applications

[edit]

Heteroscedastic errors

[edit]

One instance in which robust estimation should be considered is when there is a strong suspicion of heteroscedasticity. In the homoscedastic model, it is assumed that the variance of the error term is constant for all values of x. Heteroscedasticity allows the variance to be dependent on x, which is more accurate for many real scenarios. For example, the variance of expenditure is often larger for individuals with higher income than for individuals with lower incomes. Software packages usually default to a homoscedastic model, even though such a model may be less accurate than a heteroscedastic model. One simple approach (Tofallis, 2008) is to apply least squares to percentage errors, as this reduces the influence of the larger values of the dependent variable compared to ordinary least squares.

Presence of outliers

[edit]

Another common situation in which robust estimation is used occurs when the data contain outliers. In the presence of outliers that do not come from the same data-generating process as the rest of the data, least squares estimation is inefficient and can be biased. Because the least squares predictions are dragged towards the outliers, and because the variance of the estimates is artificially inflated, the result is that outliers can be masked. (In many situations, including some areas of geostatistics and medical statistics, it is precisely the outliers that are of interest.)

Although it is sometimes claimed that least squares (or classical statistical methods in general) are robust, they are only robust in the sense that the type I error rate does not increase under violations of the model. In fact, the type I error rate tends to be lower than the nominal level when outliers are present, and there is often a dramatic increase in the type II error rate. The reduction of the type I error rate has been labelled as the conservatism of classical methods.

History and unpopularity of robust regression

[edit]

Despite their superior performance over least squares estimation in many situations, robust methods for regression are still not widely used. Several reasons may help explain their unpopularity (Hampel et al. 1986, 2005). One possible reason is that there are several competing methods [citation needed] and the field got off to many false starts. Also, robust estimates are much more computationally intensive than least squares estimation[citation needed]; in recent years, however, this objection has become less relevant, as computing power has increased greatly. Another reason may be that some popular statistical software packages failed to implement the methods (Stromberg, 2004). Perhaps the most important reason for the unpopularity of robust regression methods is that when the error variance is quite large or does not exist, for any given dataset, any estimate of the regression coefficients, robust or otherwise, will likely be practically worthless unless the sample is quite large.

Although uptake of robust methods has been slow, modern mainstream statistics text books often include discussion of these methods (for example, the books by Seber and Lee, and by Faraway[vague]; for a good general description of how the various robust regression methods developed from one another see Andersen's book[vague]). Also, modern statistical software packages such as R, SAS, Statsmodels, Stata and S-PLUS include considerable functionality for robust estimation (see, for example, the books by Venables and Ripley, and by Maronna et al.[vague]).

Methods for robust regression

[edit]

Least squares alternatives

[edit]

The simplest methods of estimating parameters in a regression model that are less sensitive to outliers than the least squares estimates, is to use least absolute deviations. Even then, gross outliers can still have a considerable impact on the model, motivating research into even more robust approaches.

In 1964, Huber introduced M-estimation for regression. The M in M-estimation stands for "maximum likelihood type". The method is robust to outliers in the response variable, but turned out not to be resistant to outliers in the explanatory variables (leverage points). In fact, when there are outliers in the explanatory variables, the method has no advantage over least squares.

In the 1980s, several alternatives to M-estimation were proposed as attempts to overcome the lack of resistance. See the book by Rousseeuw and Leroy[vague] for a very practical review. Least trimmed squares (LTS) is a viable alternative and is currently (2007) the preferred choice of Rousseeuw and Ryan (1997, 2008). The Theil–Sen estimator has a lower breakdown point than LTS but is statistically efficient and popular. Another proposed solution was S-estimation. This method finds a line (plane or hyperplane) that minimizes a robust estimate of the scale (from which the method gets the S in its name) of the residuals. This method is highly resistant to leverage points and is robust to outliers in the response. However, this method was also found to be inefficient.

MM-estimation attempts to retain the robustness and resistance of S-estimation, whilst gaining the efficiency of M-estimation. The method proceeds by finding a highly robust and resistant S-estimate that minimizes an M-estimate of the scale of the residuals (the first M in the method's name). The estimated scale is then held constant whilst a close by M-estimate of the parameters is located (the second M).

Parametric alternatives

[edit]

Another approach to robust estimation of regression models is to replace the normal distribution with a heavy-tailed distribution. A t-distribution with 4–6 degrees of freedom has been reported to be a good choice in various practical situations. Bayesian robust regression, being fully parametric, relies heavily on such distributions.

Under the assumption of t-distributed residuals, the distribution is a location-scale family. That is, . The degrees of freedom of the t-distribution is sometimes called the kurtosis parameter. Lange, Little and Taylor (1989) discuss this model in some depth from a non-Bayesian point of view. A Bayesian account appears in Gelman et al. (2003).

An alternative parametric approach is to assume that the residuals follow a mixture of normal distributions (Daemi et al. 2019); in particular, a contaminated normal distribution in which the majority of observations are from a specified normal distribution, but a small proportion are from a normal distribution with much higher variance. That is, residuals have probability of coming from a normal distribution with variance , where is small, and probability of coming from a normal distribution with variance for some :

Typically, . This is sometimes called the -contamination model.

Parametric approaches have the advantage that likelihood theory provides an "off-the-shelf" approach to inference (although for mixture models such as the -contamination model, the usual regularity conditions might not apply), and it is possible to build simulation models from the fit. However, such parametric models still assume that the underlying model is literally true. As such, they do not account for skewed residual distributions or finite observation precisions.

Unit weights

[edit]

Another robust method is the use of unit weights (Wainer & Thissen, 1976), a method that can be applied when there are multiple predictors of a single outcome. Ernest Burgess (1928) used unit weights to predict success on parole. He scored 21 positive factors as present (e.g., "no prior arrest" = 1) or absent ("prior arrest" = 0), then summed to yield a predictor score, which was shown to be a useful predictor of parole success. Samuel S. Wilks (1938) showed that nearly all sets of regression weights sum to composites that are very highly correlated with one another, including unit weights, a result referred to as Wilks' theorem (Ree, Carretta, & Earles, 1998). Robyn Dawes (1979) examined decision making in applied settings, showing that simple models with unit weights often outperformed human experts. Bobko, Roth, and Buster (2007) reviewed the literature on unit weights and concluded that decades of empirical studies show that unit weights perform similar to ordinary regression weights on cross validation.

Example: BUPA liver data

[edit]

The BUPA liver data have been studied by various authors, including Breiman (2001). The data can be found at the classic data sets page, and there is some discussion in the article on the Box–Cox transformation. A plot of the logs of ALT versus the logs of γGT appears below. The two regression lines are those estimated by ordinary least squares (OLS) and by robust MM-estimation. The analysis was performed in R using software made available by Venables and Ripley (2002).

The two regression lines appear to be very similar (and this is not unusual in a data set of this size). However, the advantage of the robust approach comes to light when the estimates of residual scale are considered. For ordinary least squares, the estimate of scale is 0.420, compared to 0.373 for the robust method. Thus, the relative efficiency of ordinary least squares to MM-estimation in this example is 1.266. This inefficiency leads to loss of power in hypothesis tests and to unnecessarily wide confidence intervals on estimated parameters.

Outlier detection

[edit]

Another consequence of the inefficiency of the ordinary least squares fit is that several outliers are masked because the estimate of residual scale is inflated; the scaled residuals are pushed closer to zero than when a more appropriate estimate of scale is used. The plots of the scaled residuals from the two models appear below. The variable on the x axis is just the observation number as it appeared in the data set. Rousseeuw and Leroy (1986) contains many such plots.

The horizontal reference lines are at 2 and ?2, so that any observed scaled residual beyond these boundaries can be considered to be an outlier. Clearly, the least squares method leads to many interesting observations being masked.

Whilst in one or two dimensions outlier detection using classical methods can be performed manually, with large data sets and in high dimensions the problem of masking can make identification of many outliers impossible. Robust methods automatically detect these observations, offering a serious advantage over classical methods when outliers are present.

See also

[edit]

References

[edit]
  • Liu, J.; Cosman, P. C.; Rao, B. D. (2018). "Robust Linear Regression via L0 Regularization". IEEE Transactions on Signal Processing. 66 (3): 698–713. doi:10.1109/TSP.2017.2771720.
  • Andersen, R. (2008). Modern Methods for Robust Regression. Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-152.
  • Ben-Gal I., Outlier detection, In: Maimon O. and Rockach L. (Eds.) Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers," Kluwer Academic Publishers, 2005, ISBN 0-387-24435-2.
  • Bobko, P., Roth, P. L., & Buster, M. A. (2007). "The usefulness of unit weights in creating composite scores: A literature review, application to content validity, and meta-analysis". Organizational Research Methods, volume 10, pages 689-709. doi:10.1177/1094428106294734
  • Daemi, Atefeh, Hariprasad Kodamana, and Biao Huang. "Gaussian process modelling with Gaussian mixture likelihood." Journal of Process Control 81 (2019): 209-220. doi:10.1016/j.jprocont.2019.06.007
  • Breiman, L. (2001). "Statistical Modeling: the Two Cultures". Statistical Science. 16 (3): 199–231. doi:10.1214/ss/1009213725. JSTOR 2676681.
  • Burgess, E. W. (1928). "Factors determining success or failure on parole". In A. A. Bruce (Ed.), The Workings of the Indeterminate Sentence Law and Parole in Illinois (pp. 205–249). Springfield, Illinois: Illinois State Parole Board. Google books
  • Dawes, Robyn M. (1979). "The robust beauty of improper linear models in decision making". American Psychologist, volume 34, pages 571-582. doi:10.1037/0003-066X.34.7.571. archived pdf
  • Draper, David (1988). "Rank-Based Robust Analysis of Linear Models. I. Exposition and Review". Statistical Science. 3 (2): 239–257. doi:10.1214/ss/1177012915. JSTOR 2245578.
  • Faraway, J. J. (2004). Linear Models with R. Chapman & Hall/CRC.
  • Fornalski, K. W. (2015). "Applications of the robust Bayesian regression analysis". International Journal of Society Systems Science. 7 (4): 314–333. doi:10.1504/IJSSS.2015.073223.
  • Gelman, A.; J. B. Carlin; H. S. Stern; D. B. Rubin (2003). Bayesian Data Analysis (Second ed.). Chapman & Hall/CRC.
  • Hampel, F. R.; E. M. Ronchetti; P. J. Rousseeuw; W. A. Stahel (2005) [1986]. Robust Statistics: The Approach Based on Influence Functions. Wiley.
  • Lange, K. L.; R. J. A. Little; J. M. G. Taylor (1989). "Robust statistical modeling using the t-distribution". Journal of the American Statistical Association. 84 (408): 881–896. doi:10.2307/2290063. JSTOR 2290063.
  • Lerman, G.; McCoy, M.; Tropp, J. A.; Zhang T. (2012). "Robust computation of linear models, or how to find a needle in a haystack", arXiv:1202.4044.
  • Maronna, R.; D. Martin; V. Yohai (2006). Robust Statistics: Theory and Methods. Wiley.
  • McKean, Joseph W. (2004). "Robust Analysis of Linear Models". Statistical Science. 19 (4): 562–570. doi:10.1214/088342304000000549. JSTOR 4144426.
  • Radchenko S.G. (2005). Robust methods for statistical models estimation: Monograph. (on Russian language). Kiev: РР ?Sanspariel?. p. 504. ISBN 978-966-96574-0-4.
  • Ree, M. J., Carretta, T. R., & Earles, J. A. (1998). "In top-down decisions, weighting variables does not matter: A consequence of Wilk's theorem. Organizational Research Methods, volume 1(4), pages 407-420. doi:10.1177/109442819814003
  • Rousseeuw, P. J.; A. M. Leroy (2003) [1986]. Robust Regression and Outlier Detection. Wiley.
  • Ryan, T. P. (2008) [1997]. Modern Regression Methods. Wiley.
  • Seber, G. A. F.; A. J. Lee (2003). Linear Regression Analysis (Second ed.). Wiley.
  • Stromberg, A. J. (2004). "Why write statistical software? The case of robust statistical methods". Journal of Statistical Software. 10 (5). doi:10.18637/jss.v010.i05.
  • Strutz, T. (2016). Data Fitting and Uncertainty (A practical introduction to weighted least squares and beyond). Springer Vieweg. ISBN 978-3-658-11455-8.
  • Tofallis, Chris (2008). "Least Squares Percentage Regression". Journal of Modern Applied Statistical Methods. 7: 526–534. doi:10.2139/ssrn.1406472. hdl:2299/965. SSRN 1406472.
  • Venables, W. N.; B. D. Ripley (2002). Modern Applied Statistics with S. Springer.
  • Wainer, H., & Thissen, D. (1976). "Three steps toward robust regression." Psychometrika, volume 41(1), pages 9–34. doi:10.1007/BF02291695
  • Wilks, S. S. (1938). "Weighting systems for linear functions of correlated variables when there is no dependent variable". Psychometrika, volume 3, pages 23–40. doi:10.1007/BF02287917
[edit]
穆斯林不吃什么 吃什么会放屁 吃阿司匹林有什么副作用 太上老君的坐骑是什么 左侧上颌窦炎症是什么意思
鬼是什么意思 c蛋白反应高是什么原因 英国为什么叫日不落帝国 顾客为什么购买 干戈指什么
城头土命是什么意思 痛风是什么 厘清和理清的区别是什么 丙型肝炎病毒抗体阴性什么意思 红米有什么功效和作用
什么网名好听 拔胡子有什么危害 窝沟封闭是什么 幡然是什么意思 手掌麻是什么原因引起的
气血不足吃什么食物最好imcecn.com 圆脸适合什么发型短发hcv8jop6ns7r.cn agc什么意思hcv7jop7ns1r.cn 老咳嗽是什么原因hcv7jop6ns4r.cn 毛峰茶属于什么茶hcv8jop1ns9r.cn
什么样的人容易中暑hcv9jop4ns8r.cn 什么是肽hcv8jop2ns4r.cn dan什么意思hcv7jop9ns4r.cn 手会抖是什么原因hcv8jop6ns7r.cn 做孕检都检查什么项目hcv8jop3ns6r.cn
1985年是什么年hcv8jop7ns4r.cn 肝阴虚吃什么中成药hcv7jop5ns6r.cn 318是什么日子hcv9jop6ns3r.cn 小暑是什么意思啊hcv8jop6ns0r.cn 低分化腺癌是什么意思dajiketang.com
霉菌性阴道炎用什么药hcv8jop1ns9r.cn 前列腺液是什么hcv9jop5ns1r.cn af什么意思aiwuzhiyu.com 身体缺钾是什么原因造成的naasee.com 冰心的原名叫什么hcv7jop7ns2r.cn
百度