胃下垂吃什么药最好| 果冻是什么做的| 奇脉见于什么病| 辗转什么意思| 基质是什么| 旭日东升是什么生肖| 芹菜和什么菜搭配最好| 咖啡加什么最好喝| 什么品种的芒果最好吃| 来大姨妈不能吃什么| 金字旁加女念什么字| 主食是什么意思| 大便颜色发绿是什么原因| 苍蝇馆子什么意思| 珅是什么意思| 胃烧心是怎么回事吃什么药| 什么是尾货| 什么魂什么魄| 什么叫通勤| 朱是什么颜色| 干咳吃什么药| 绿豆煮出来为什么是红色的| 来月经前头痛什么原因| 小孩荨麻疹吃什么药| 梦见朋友死了是什么意思| 梦见干活是什么意思| 什么样的人不能吃海参| 中性粒细胞低吃什么药| 歆字取名什么寓意| 云南是什么民族| 乳腺结节不能吃什么| 小鸟来家里有什么预兆| 爷爷的妈妈叫什么| 蘖是什么意思| 驱动精灵是干什么用的| 什么叫缘分| nbc是什么意思| 阴蒂痒是什么原因| 今天突然拉稀拉出血什么原因| 5月17日是什么星座| 哈尔滨机场叫什么名字| air是什么牌子的鞋| 维生素c什么牌子好| 血栓是什么| 双氯芬酸钠缓释片是什么药| 宫颈钙化灶是什么意思| 梦见男朋友是什么意思| 霖字五行属什么| 喝茶对身体有什么好处| 文员是什么| 脱氧核苷酸是什么| 风湿免疫科是看什么病的| 新西兰移民需要什么条件| 不什么其烦| 核磁共振跟ct有什么区别| 2019什么年| 冠状动脉钙化是什么意思| 梦到上坟是什么意思| 十二月份的是什么星座| 什么叫吐槽| 弓加耳念什么| 拉肚子喝什么| 双脚踝浮肿是什么原因| icd医学上是什么意思| 银手镯对身体有什么好处| 龟裂是什么意思| 定坤丹适合什么人吃| 射手座跟什么星座最配| 天台是什么意思| 肾阳虚吃什么中药| 农历4月14日是什么星座| 猪八戒原名叫什么| mcm是什么意思| 素有是什么意思| 什么是僵尸恒星| 尚公主是什么意思| 白领是什么| 梅毒rpr是什么| 梦见抢银行是什么意思| 胆囊结石有什么影响| 双子座女和什么星座最配| 食物中毒有什么症状| 一路卷风迎大年是什么生肖| 支原体培养及药敏是检查什么| 吃什么有助于排便| 逻辑性是什么意思| 1996年1月属什么生肖| 男人长期喝什么茶最好| 火棉胶婴儿是什么意思| 包皮垢是什么| 属虎的生什么属相的宝宝好| 精索静脉曲张是什么原因导致的| 血hcg是什么意思| 07年是什么年| 风热感冒吃什么消炎药| 胆结石吃什么最好| 骆驼吃什么食物| 6.26什么星座| 小孩眨眼睛是什么原因| 盗汗吃什么药| 原生家庭是什么意思| 梦见小青蛇是什么预兆| 什么水果可以解酒| 一龙一什么| 风林火山是什么意思| 锦州有什么大学| 抑制什么意思| 脚踝疼是什么原因| 为什么会突然不爱了| 什么是鬼压床| 三无产品指的是什么| 做一半就软了是什么原因| 洗牙挂什么科| guess是什么品牌| 诺如病毒通过什么传染| 每天什么时间锻炼最好| 正太是什么| 丙肝是什么病严重吗| 做梦梦到自己生病了是什么意思| 烤鱼放什么配菜好吃| 右眼一直跳是什么预兆| 为什么一到晚上就痒| 圆脸适合什么短发发型| 案山是什么意思| 悲伤是什么意思| 哈气是什么意思| 女性雄激素过高是什么原因引起的| 同学生日送什么礼物| 荆芥不能和什么一起吃| 早餐吃什么最营养| 蛇年五行属什么| 540是什么意思| 韶关有什么特产| 甲醛是什么| 头臀径是指什么| 下肢动脉闭塞吃什么药| 有白带发黄是什么原因| 肾虚对男生意味着什么| 褐色是什么颜色的图片| 清火喝什么茶| 今年71岁属什么生肖| 2.26是什么星座| otc代表什么| 吹泡泡是什么意思| 家财万贯是什么生肖| 感冒打什么针| 检查乳腺做什么检查| 有迹可循什么意思| 请多指教是什么意思| 绿得什么| 深水炸弹是什么意思| 猥琐什么意思| 桃花是指什么生肖| 骨灰盒什么材质的好| 多发性脂肪瘤是什么原因造成的| 牙髓炎是什么| 钾低是什么原因| 海棠什么时候开花| 在农村做什么| 牛黄清心丸治什么病| 霉菌是什么原因感染的| 唯女子与小人难养也是什么意思| 经常勃起是什么原因| 白凉粉是什么| 早餐一般吃什么| 遵命是什么意思| 电解工是干什么的| 胎盘宫底后壁是什么意思| 3.1是什么星座| 面瘫是什么引起的| 过敏性结膜炎用什么眼药水| g6pd筛查是检查什么| 欺山莫欺水是什么意思| 做梦孩子死了什么预兆| 知了为什么一直叫| 宠物医院需要什么资质| 治疗阳痿吃什么药| 激素六项是查什么的| 碧螺春是什么茶| 安宫牛黄丸什么时候吃最好| 肝功能四项检查什么| 层出不穷是什么意思| 脚心发麻是什么原因引起的| 腿抽筋是什么原因造成的| 男人湿气重吃什么药| 咳嗽能吃什么| 什么是开悟| 吃什么补镁| 梦见自己手机丢了是什么意思| 宾至如归是什么意思| lodge是什么意思| 心率过高是什么原因| 古稀是什么意思| 羞辱什么意思| 月经不停吃什么药| 什么叫静脉曲张| 狗狗生产需要准备什么| 端午节吃什么| 虹字五行属什么| 整个手掌发红是什么原因| 龙蛇混杂是什么意思| 午夜凶铃讲的是什么故事| 羸弱什么意思| 独角兽是什么动物| 喝豆浆有什么好处和坏处| 胆碱酯酶低是什么原因| 老花眼视力模糊有什么办法解决吗| 防晒衣什么颜色最好| 为什么男的叫鸭子| 生肖狗和什么生肖相冲| 什么时候吃榴莲最好| 拉肚子吃什么药效果好| 丙肝吃什么药效果好| 低密度脂蛋白偏高吃什么药| 急性扁桃体发炎吃什么药| 什么海翻江| 为什么会痛经| 眼底出血是什么原因引起的| 花仙子是什么意思| 情感和感情有什么区别| 什么书在书店买不到| va是什么维生素| 中国的国宝是什么| 脑浆是什么颜色| 梦见盖新房子是什么意思| 胆囊炎吃什么水果好| 口干口苦是什么原因| 体检前需要注意什么| 很nice什么意思| 日本为什么要偷袭珍珠港| 草莓的花是什么颜色| 百什么百什么的成语| 节瓜煲汤放什么材料| 夏天适合喝什么养生茶| 可可和咖啡有什么区别| 白衬衫配什么裤子好看| 地中海贫血有什么症状| 老天爷叫什么名字| 尿道感染用什么消炎药| 郑州机场叫什么名字| 黄明胶是什么| 什么硬币最值钱| 什么生日的人有佛缘| 荥在中医读什么| 孕妇喝柠檬水对胎儿有什么好处| 嗝气是什么原因| 小孩铅过高有什么症状| 美字五行属什么| 动脉硬化吃什么药最好| 胃复安又叫什么| 炒熟的黑豆有什么功效| 什么是胃肠型更年期| 手足口病用什么药| 5月19日什么星座| 早早孕什么时候测最准| amv是什么意思| 脉跳的快是什么原因| 肝气郁结吃什么中成药| 静脉注射是什么意思| 宫颈炎吃什么药好得快| 低血压对身体有什么影响| a型血的孩子父母是什么血型| cc是什么意思| 小腿经常抽筋是什么原因| 百度Jump to content

凯迪生态一季度盈利过亿 大股东增持近千万股

From Wikipedia, the free encyclopedia

Scalability is the property of a system to handle a growing amount of work. One definition for software systems specifies that this may be done by adding resources to the system.[1]

In an economic context, a scalable business model implies that a company can increase sales given increased resources. For example, a package delivery system is scalable because more packages can be delivered by adding more delivery vehicles. However, if all packages had to first pass through a single warehouse for sorting, the system would not be as scalable, because one warehouse can handle only a limited number of packages.[2]

In computing, scalability is a characteristic of computers, networks, algorithms, networking protocols, programs and applications. An example is a search engine, which must support increasing numbers of users, and the number of topics it indexes.[3] Webscale is a computer architectural approach that brings the capabilities of large-scale cloud computing companies into enterprise data centers.[4]

In distributed systems, there are several definitions according to the authors, some considering the concepts of scalability a sub-part of elasticity, others as being distinct. According to Marc Brooker: "a system is scalable in the range where marginal cost of additional workload is nearly constant." Serverless technologies fit this definition but you need to consider total cost of ownership not just the infra cost. [5]

In mathematics, scalability mostly refers to closure under scalar multiplication.

In industrial engineering and manufacturing, scalability refers to the capacity of a process, system, or organization to handle a growing workload, adapt to increasing demands, and maintain operational efficiency. A scalable system can effectively manage increased production volumes, new product lines, or expanding markets without compromising quality or performance. In this context, scalability is a vital consideration for businesses aiming to meet customer expectations, remain competitive, and achieve sustainable growth. Factors influencing scalability include the flexibility of the production process, the adaptability of the workforce, and the integration of advanced technologies. By implementing scalable solutions, companies can optimize resource utilization, reduce costs, and streamline their operations. Scalability in industrial engineering and manufacturing enables businesses to respond to fluctuating market conditions, capitalize on emerging opportunities, and thrive in an ever-evolving global landscape.[citation needed]

Examples

[edit]

The Incident Command System (ICS) is used by emergency response agencies in the United States. ICS can scale resource coordination from a single-engine roadside brushfire to an interstate wildfire. The first resource on scene establishes command, with authority to order resources and delegate responsibility (managing five to seven officers, who will again delegate to up to seven, and on as the incident grows). As an incident expands, more senior officers assume command.[6]

Dimensions

[edit]

Scalability can be measured over multiple dimensions, such as:[7]

  • Administrative scalability: The ability for an increasing number of organizations or users to access a system.
  • Functional scalability: The ability to enhance the system by adding new functionality without disrupting existing activities.
  • Geographic scalability: The ability to maintain effectiveness during expansion from a local area to a larger region.
  • Load scalability: The ability for a distributed system to expand and contract to accommodate heavier or lighter loads, including, the ease with which a system or component can be modified, added, or removed, to accommodate changing loads.
  • Generation scalability: The ability of a system to scale by adopting new generations of components.
  • Heterogeneous scalability is the ability to adopt components from different vendors.

Domains

[edit]
  • A routing protocol is considered scalable with respect to network size, if the size of the necessary routing table on each node grows as O(log N), where N is the number of nodes in the network. Some early peer-to-peer (P2P) implementations of Gnutella had scaling issues. Each node query flooded its requests to all nodes. The demand on each peer increased in proportion to the total number of peers, quickly overrunning their capacity. Other P2P systems like BitTorrent scale well because the demand on each peer is independent of the number of peers. Nothing is centralized, so the system can expand indefinitely without any resources other than the peers themselves.
  • A scalable online transaction processing system or database management system is one that can be upgraded to process more transactions by adding new processors, devices and storage, and which can be upgraded easily and transparently without shutting it down.
  • The distributed nature of the Domain Name System (DNS) allows it to work efficiently, serving billions of hosts on the worldwide Internet.

Horizontal (scale out) and vertical scaling (scale up)

[edit]
Graphic that visualizes horizontal and vertical scaling.
Horizontal scaling adds new nodes to a computing cluster, while vertical scaling adds resources to existing nodes.

Resources fall into two broad categories: horizontal and vertical.[8]

Horizontal or scale out

[edit]

Scaling horizontally (out/in) means adding or removing nodes, such as adding a new computer to a distributed software application. An example might involve scaling out from one web server to three. High-performance computing applications, such as seismic analysis and biotechnology, scale workloads horizontally to support tasks that once would have required expensive supercomputers. Other workloads, such as large social networks, exceed the capacity of the largest supercomputer and can only be handled by scalable systems. Exploiting this scalability requires software for efficient resource management and maintenance.[7]

Vertical or scale up

[edit]

Scaling vertically (up/down) means adding resources to (or removing resources from) a single node, typically involving the addition of CPUs, memory or storage to a single computer.[7]

Benefits to scale-up include avoiding increased management complexity, more sophisticated programming to allocate tasks among resources and handling issues such as throughput, latency, and synchronization across nodes. Moreover some applications do not scale horizontally.

Network scalability

[edit]

Network function virtualization defines these terms differently: scaling out/in is the ability to scale by adding/removing resource instances (e.g., virtual machine), whereas scaling up/down is the ability to scale by changing allocated resources (e.g., memory/CPU/storage capacity).[9]

Database scalability

[edit]

Scalability for databases requires that the database system be able to perform additional work given greater hardware resources, such as additional servers, processors, memory and storage. Workloads have continued to grow and demands on databases have followed suit.

Algorithmic innovations include row-level locking and table and index partitioning. Architectural innovations include shared-nothing and shared-everything architectures for managing multi-server configurations.

Strong versus eventual consistency (storage)

[edit]

In the context of scale-out data storage, scalability is defined as the maximum storage cluster size which guarantees full data consistency, meaning there is only ever one valid version of stored data in the whole cluster, independently from the number of redundant physical data copies. Clusters which provide "lazy" redundancy by updating copies in an asynchronous fashion are called 'eventually consistent'. This type of scale-out design is suitable when availability and responsiveness are rated higher than consistency, which is true for many web file-hosting services or web caches (if you want the latest version, wait some seconds for it to propagate). For all classical transaction-oriented applications, this design should be avoided.[10]

Many open-source and even commercial scale-out storage clusters, especially those built on top of standard PC hardware and networks, provide eventual consistency only, such as some NoSQL databases like CouchDB and others mentioned above. Write operations invalidate other copies, but often don't wait for their acknowledgements. Read operations typically don't check every redundant copy prior to answering, potentially missing the preceding write operation. The large amount of metadata signal traffic would require specialized hardware and short distances to be handled with acceptable performance (i.e., act like a non-clustered storage device or database).[citation needed]

Whenever strong data consistency is expected, look for these indicators:[citation needed]

  • the use of InfiniBand, Fibrechannel or similar low-latency networks to avoid performance degradation with increasing cluster size and number of redundant copies.
  • short cable lengths and limited physical extent, avoiding signal runtime performance degradation.
  • majority / quorum mechanisms to guarantee data consistency whenever parts of the cluster become inaccessible.

Indicators for eventually consistent designs (not suitable for transactional applications!) are:[citation needed]

  • write performance increases linearly with the number of connected devices in the cluster.
  • while the storage cluster is partitioned, all parts remain responsive. There is a risk of conflicting updates.

Performance tuning versus hardware scalability

[edit]

It is often advised to focus system design on hardware scalability rather than on capacity. It is typically cheaper to add a new node to a system in order to achieve improved performance than to partake in performance tuning to improve the capacity that each node can handle. But this approach can have diminishing returns (as discussed in performance engineering). For example: suppose 70% of a program can be sped up if parallelized and run on multiple CPUs instead of one. If is the fraction of a calculation that is sequential, and is the fraction that can be parallelized, the maximum speedup that can be achieved by using P processors is given according to Amdahl's Law:

Substituting the value for this example, using 4 processors gives

Doubling the computing power to 8 processors gives

Doubling the processing power has only sped up the process by roughly one-fifth. If the whole problem was parallelizable, the speed would also double. Therefore, throwing in more hardware is not necessarily the optimal approach.

Universal Scalability Law

[edit]

In distributed systems, you can use Universal Scalability Law (USL) to model and to optimize scalability of your system. USL is coined by Neil J. Gunther and quantifies scalability based on parameters such as contention and coherency. Contention refers to delay due to waiting or queueing for shared resources. Coherence refers to delay for data to become consistent. For example, having a high contention indicates sequential processing that could be parallelized, while having a high coherency suggests excessive dependencies among processes, prompting you to minimize interactions. Also, with help of USL, you can, in advance, calculate the maximum effective capacity of your system: scaling up your system beyond that point is a waste. [11]

Weak versus strong scaling

[edit]

High performance computing has two common notions of scalability:

  • Strong scaling is defined as how the solution time varies with the number of processors for a fixed total problem size.
  • Weak scaling is defined as how the solution time varies with the number of processors for a fixed problem size per processor.[12]

See also

[edit]

References

[edit]
  1. ^ Bondi, André B. (2000). Characteristics of scalability and their impact on performance. Proceedings of the second international workshop on Software and performance – WOSP '00. p. 195. doi:10.1145/350391.350432. ISBN 158113195X.
  2. ^ Hill, Mark D. (1990). "What is scalability?" (PDF). ACM SIGARCH Computer Architecture News. 18 (4): 18. doi:10.1145/121973.121975. S2CID 1232925. and
    Duboc, Leticia; Rosenblum, David S.; Wicks, Tony (2006). A framework for modelling and analysis of software systems scalability (PDF). Proceedings of the 28th international conference on Software engineering – ICSE '06. p. 949. doi:10.1145/1134285.1134460. ISBN 1595933751.
  3. ^ Laudon, Kenneth Craig; Traver, Carol Guercio (2008). E-commerce: Business, Technology, Society. Pearson Prentice Hall/Pearson Education. ISBN 9780136006459.
  4. ^ "Why web-scale is the future". Network World. 2025-08-05. Retrieved 2025-08-05.
  5. ^ Building Serverless Applications on Knative. O'Reilly Media. ISBN 9781098142049.
  6. ^ Bigley, Gregory A.; Roberts, Karlene H. (2025-08-05). "The Incident Command System: High-Reliability Organizing for Complex and Volatile Task Environments". Academy of Management Journal. 44 (6): 1281–1299. doi:10.5465/3069401 (inactive 12 July 2025). ISSN 0001-4273.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  7. ^ a b c Hesham El-Rewini and Mostafa Abd-El-Barr (April 2005). Advanced Computer Architecture and Parallel Processing. John Wiley & Sons. p. 66. ISBN 978-0-471-47839-3.
  8. ^ Michael, Maged; Moreira, Jose E.; Shiloach, Doron; Wisniewski, Robert W. (March 26, 2007). Scale-up x Scale-out: A Case Study using Nutch/Lucene. 2007 IEEE International Parallel and Distributed Processing Symposium. p. 1. doi:10.1109/IPDPS.2007.370631. ISBN 978-1-4244-0909-9.
  9. ^ "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV". Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05.
  10. ^ Sadek Drobi (January 11, 2008). "Eventual consistency by Werner Vogels". InfoQ. Retrieved April 8, 2017.
  11. ^ Gunther, Neil (2007). Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable Applications and Services. ISBN 978-3540261384.
  12. ^ "The Weak Scaling of DL_POLY 3". STFC Computational Science and Engineering Department. Archived from the original on March 7, 2014. Retrieved March 8, 2014.
[edit]
效价是什么意思 炖鸡块放什么调料 拉肚子是什么原因 手心脚心发热吃什么药 印泥干了用什么稀释
情绪化什么意思 舅舅和外甥女是什么关系 榴莲苦是什么原因 脂血是什么意思 考科目二紧张吃什么药
三个为什么 夏季吃什么好 验孕棒什么时候测比较准 所以然什么意思 威士忌是用什么酿造的
1989是什么年 腿膝盖疼是什么原因 吃什么盐比较好有利于健康 局限性是什么意思 燕窝是什么做的
bart是什么意思hcv8jop0ns6r.cn 长疱疹是什么原因hcv8jop4ns9r.cn 什么是中位数creativexi.com 麒麟是什么shenchushe.com 宠辱不惊是什么意思hcv9jop2ns7r.cn
肚子疼是什么病hcv8jop8ns5r.cn 250为什么是骂人的话kuyehao.com 滑精是什么意思hcv9jop1ns9r.cn 女生被摸胸是什么感觉hcv9jop4ns9r.cn 阿尔兹海默症吃什么药liaochangning.com
七月十日是什么日子hcv8jop0ns2r.cn 嗓子疼喝什么hcv8jop5ns6r.cn 镁低了是什么原因huizhijixie.com 酒糟是什么东西hcv8jop6ns5r.cn 什么叫间质性肺病hcv9jop2ns9r.cn
黄宗洛黄海波什么关系hcv8jop7ns9r.cn 鸡腿为什么这么便宜hcv7jop6ns8r.cn 芙蓉什么意思hcv8jop1ns8r.cn 什么食物对肺有好处hcv8jop8ns5r.cn 脚转筋是什么原因wzqsfys.com
百度