心里害怕紧张恐惧是什么症状| 肠子长息肉有什么症状| 为什么心里老是想着死| 汉防己甲素片治什么病| 梦见别人家拆房子是什么预兆| 龙的九个儿子都叫什么名字| 上火吃什么水果好| 策划是干什么的| 水滴石穿是什么变化| bid是什么意思啊| 草字头加果念什么| 02年的属什么| 吃什么对喉咙好| 环比是什么意思| 蛋蛋疼是什么原因| 茶花什么时候开花| 乌龟代表什么数字| 痔疮不治会有什么危害| 舒俱来是什么宝石| 帕金森是什么原因引起的| 全身酸痛是什么原因| 反胃吃什么可以缓解| ky是什么意思| 食物中毒吃什么药解毒| 例假推迟是什么原因| 梦见一群羊是什么意思| 25分贝相当于什么声音| 草字头加西念什么| 勺子是什么意思| 小腹疼挂什么科| 黄体酮是什么意思| journey是什么意思| 流鼻涕吃什么药最管用| 振水音阳性提示什么| 衍生物是什么意思| 黑上衣配什么颜色裤子男| 来月经同房会有什么后果| 健康管理是做什么的| 维生素d3吃多了有什么副作用| 血清蛋白是什么| 补气血吃什么最好最快| mario是什么意思| 眼睛浮肿是什么原因引起的| 品检是做什么的| 麦昆牌子是什么档次| 走花路是什么意思| 余田是什么字| 血管硬化吃什么能软化| 碱是什么东西| 阴是什么生肖| 正因数是什么| 拉抽屉是什么现象| 5月20号是什么星座| 小孩手麻是什么原因| 什么是红斑狼疮| 南昌有什么好玩的| 七八年属什么生肖| 大便恶臭是什么原因| 做扩胸运动有什么好处| 胡麻油是什么油| 属鼠的本命佛是什么佛| 什么样的人不能献血| 偏左偏右是什么意思| 睡觉后腰疼是什么原因引起的| 芝士是什么做的| 腺肌症是什么| 长期低烧是什么原因| 丝瓜吃了有什么好处| 与其让你在我怀中枯萎是什么歌| 睡不醒是什么原因| 左旋延胡索乙素是什么| 小河虾吃什么| 二姨子是什么意思| 1944年属什么生肖| 丘疹是什么原因引起的| 拉杆箱什么材质的好| 3月10日什么星座| 拉肚子吃什么药最有效果| 安赛蜜是什么东西| 母亲生日送什么礼物| 钻石是什么材质| 匀字五行属什么| 午夜凶铃讲的是什么故事| 床垫什么样的好| 依非韦伦片治什么病的| 血浓稠是什么原因引起的| 浊是什么意思| 左手小指和无名指发麻是什么原因| 梦见爬山是什么预兆| 91年的羊是什么命| 什么是溶血| 步摇是什么| 一什么鱼| 无厘头什么意思| 打啵什么意思| 雌二醇低吃什么补得快| 不爱说话的人是什么性格| 情绪低落是什么意思| 白细胞数目偏高是什么意思| 玫瑰糠疹什么原因引起的| 蔬菜沙拉都放什么菜| 喉咙上火吃什么药| 晟什么意思| 痈是什么意思| 打喷嚏漏尿是什么原因| 眉毛里面长痘痘是什么原因| 一什么雨伞| 妍字属于五行属什么| 责成是什么意思| 为什么会有头皮屑| 聪明如你什么意思| 夜代表什么生肖| 怀孕了胃不舒服是什么原因| 包皮过长是什么样的| 蜘蛛痣是什么原因引起的| oof是什么意思| 胆囊切除后需要注意什么| 下肢血液循环不好吃什么药| domestic是什么意思| 慎用是什么意思| 爻辞是什么意思| 相思成疾是什么意思| 小孩尿不出来尿是什么原因| bf什么意思| 禅宗是什么意思| 世界上最小的国家是什么| 玉的主要成分是什么| 气血不足吃什么食物最好| 朱日和是什么意思| 拔苗助长是什么生肖| 手指长痣代表什么| 与五行属什么| 肝病晚期什么症状| 胎儿双肾盂分离是什么意思| 流产药叫什么名字| 头响脑鸣是什么原因引起的| 足字旁的字和什么有关| 磨豆浆是什么意思| 白细胞低是什么原因| 户籍所在地是指什么| 玉米淀粉是什么| 陪护是什么意思| 什么是纳豆| 一阵什么| 梦见墙倒了有什么预兆| 医助是什么工作| 色丁布是什么面料| 为什么会得幽门螺旋杆菌| 梦见抢银行是什么意思| 洁尔阴洗液有什么作用| 移民瑞士需要什么条件| swi是什么检查| 切除痣挂什么科| 女人吃藕有什么好处| 什么是有机奶粉| 肺部肿瘤切除后吃什么| 鼻子肿了又硬又疼是什么原因| 止血敏又叫什么| 检查梅毒挂什么科| 天空中有什么| 为什么突然就细菌感染了| 去心火喝什么茶好| 倍感欣慰是什么意思| 儿童坐动车需要带什么证件| 杯弓蛇影是什么物理现象| od是什么意思| 女孩为什么难得午时贵| 红沙日是什么意思| 爱的意义是什么| 蟒袍是什么人穿的| honey什么意思| 朝秦暮楚是什么意思| 夏天手脱皮是什么原因| 沉鱼落雁闭月羞花是什么意思| 慢性荨麻疹是什么症状| 化验肝功挂什么科| 什么叫应届毕业生| 沙门氏菌用什么药最好| 煮牛肉放什么容易烂| 为什么总是做梦| 经常便秘吃什么药好| 黄体破裂是什么意思| 阑尾炎是什么症状| 血小板低会引发什么病| 3月20号是什么星座| 高危型hpv66阳性是什么意思| 国防部长有什么权利| dna是什么意思| 车前草能治什么病| 叶绿素主要吸收什么光| 女人依赖男人说明什么| 819是什么意思| 水痘可以吃什么| 姜太公钓鱼愿者上钩是什么意思| 女性白带有血丝是什么原因| 梦见梯子是什么意思| 什么是可支配收入| 1.14是什么星座| 什么叫有氧运动| 梅花手表属于什么档次| 耐克是什么牌子| 甲状腺是什么功能| 男人小腹疼痛是什么原因| 做梦梦见钓鱼是什么意思| s 是什么意思| 13岁属什么生肖| 地果是什么| prn是什么意思| 欣赏什么| 来曲唑片什么时候吃最好| 培根是什么肉做的| 什么时候上环是最佳时期| 文殊菩萨是保佑什么的| edt是什么时间| 菠萝蜜的核有什么功效| 人什么什么什么| 脑彩超能检查出什么| 皮下出血点是什么原因| 开瑞坦是什么药| 腊八节吃什么| 什么水果是热性的| 12月14是什么星座| 消炎药都有什么| 肾虚对男生意味着什么| anxiety什么意思| eso是什么意思| 百雀羚适合什么年龄段| 难为你了是什么意思| feat什么意思| 血管病变是什么意思| 什么植物和动物像鸡| o3是什么| 放屁很臭是什么原因| 梦见自己会开车了是什么意思| rdw是什么意思| 羊水是什么颜色| 什么生肖怕老婆| 电是什么时候发明的| 胆水的成分是什么| 牛骨头炖什么好吃| 北海龙王叫什么| 舌头发麻什么原因| 静脉曲张吃什么药| 淀粉和面粉有什么区别| 阎维文什么军衔| 贾珍和贾政是什么关系| 台湾什么时候收复| 什么炎炎| 司空见惯的惯是什么意思| 喜欢紫色代表什么| 虐心是什么意思| 层峦叠翠的意思是什么| 经过的意思是什么| 生肖猴和什么生肖相冲| 经常出汗是什么原因| pdd是什么| 梦见捡到钱是什么预兆| 什么叫犹太人| 东南属什么五行| 炎热的夏天风儿像什么| 囊肿是什么原因引起的| 碳水化合物是什么意思| 长闭口是什么原因造成的| 羊水多对胎儿有什么影响| 百度Jump to content

北方华创高端真空装备踏出国门

From Wikipedia, the free encyclopedia
百度 假如武则天在世,是不是初二这天要来看看她娘?”家住顺陵旁边的村民侯先生开玩笑地说。

Ridge regression (also known as Tikhonov regularization, named for Andrey Tikhonov) is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated.[1] It has been used in many fields including econometrics, chemistry, and engineering.[2] It is a method of regularization of ill-posed problems.[a] It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.[3] In general, the method provides improved efficiency in parameter estimation problems in exchange for a tolerable amount of bias (see bias–variance tradeoff).[4]

The theory was first introduced by Hoerl and Kennard in 1970 in their Technometrics papers "Ridge regressions: biased estimation of nonorthogonal problems" and "Ridge regressions: applications in nonorthogonal problems".[5][6][1]

Ridge regression was developed as a possible solution to the imprecision of least square estimators when linear regression models have some multicollinear (highly correlated) independent variables—by creating a ridge regression estimator (RR). This provides a more precise ridge parameters estimate, as its variance and mean square estimator are often smaller than the least square estimators previously derived.[7][2]

Overview

[edit]

In the simplest case, the problem of a near-singular moment matrix is alleviated by adding positive elements to the diagonals, thereby decreasing its condition number. Analogous to the ordinary least squares estimator, the simple ridge estimator is then given by where is the regressand, is the design matrix, is the identity matrix, and the ridge parameter serves as the constant shifting the diagonals of the moment matrix.[8] It can be shown that this estimator is the solution to the least squares problem subject to the constraint , which can be expressed as a Lagrangian minimization: which shows that is nothing but the Lagrange multiplier of the constraint.[9] In fact, there is a one-to-one relationship between and and since, in practice, we do not know , we define heuristically or find it via additional data-fitting strategies, see Determination of the Tikhonov factor.

Note that, when , in which case the constraint is non-binding, the ridge estimator reduces to ordinary least squares. A more general approach to Tikhonov regularization is discussed below.

History

[edit]

Tikhonov regularization was invented independently in many different contexts. It became widely known through its application to integral equations in the works of Andrey Tikhonov[10][11][12][13][14] and David L. Phillips.[15] Some authors use the term Tikhonov–Phillips regularization. The finite-dimensional case was expounded by Arthur E. Hoerl, who took a statistical approach,[16] and by Manus Foster, who interpreted this method as a Wiener–Kolmogorov (Kriging) filter.[17] Following Hoerl, it is known in the statistical literature as ridge regression,[18] named after ridge analysis ("ridge" refers to the path from the constrained maximum).[19]

Tikhonov regularization

[edit]

Suppose that for a known real matrix and vector , we wish to find a vector such that where and may be of different sizes and may be non-square.

The standard approach is ordinary least squares linear regression.[clarification needed] However, if no satisfies the equation or more than one does—that is, the solution is not unique—the problem is said to be ill posed. In such cases, ordinary least squares estimation leads to an overdetermined, or more often an underdetermined system of equations. Most real-world phenomena have the effect of low-pass filters[clarification needed] in the forward direction where maps to . Therefore, in solving the inverse-problem, the inverse mapping operates as a high-pass filter that has the undesirable tendency of amplifying noise (eigenvalues / singular values are largest in the reverse mapping where they were smallest in the forward mapping). In addition, ordinary least squares implicitly nullifies every element of the reconstructed version of that is in the null-space of , rather than allowing for a model to be used as a prior for . Ordinary least squares seeks to minimize the sum of squared residuals, which can be compactly written as where is the Euclidean norm.

In order to give preference to a particular solution with desirable properties, a regularization term can be included in this minimization: for some suitably chosen Tikhonov matrix . In many cases, this matrix is chosen as a scalar multiple of the identity matrix (), giving preference to solutions with smaller norms; this is known as L2 regularization.[20] In other cases, high-pass operators (e.g., a difference operator or a weighted Fourier operator) may be used to enforce smoothness if the underlying vector is believed to be mostly continuous. This regularization improves the conditioning of the problem, thus enabling a direct numerical solution. An explicit solution, denoted by , is given by The effect of regularization may be varied by the scale of matrix . For this reduces to the unregularized least-squares solution, provided that (ATA)?1 exists. Note that in case of a complex matrix , as usual the transpose has to be replaced by the Hermitian transpose .

L2 regularization is used in many contexts aside from linear regression, such as classification with logistic regression or support vector machines,[21] and matrix factorization.[22]

Application to existing fit results

[edit]

Since Tikhonov Regularization simply adds a quadratic term to the objective function in optimization problems, it is possible to do so after the unregularised optimisation has taken place. E.g., if the above problem with yields the solution , the solution in the presence of can be expressed as: with the "regularisation matrix" .

If the parameter fit comes with a covariance matrix of the estimated parameter uncertainties , then the regularisation matrix will be and the regularised result will have a new covariance

In the context of arbitrary likelihood fits, this is valid, as long as the quadratic approximation of the likelihood function is valid. This means that, as long as the perturbation from the unregularised result is small, one can regularise any result that is presented as a best fit point with a covariance matrix. No detailed knowledge of the underlying likelihood function is needed. [23]

Generalized Tikhonov regularization

[edit]

For general multivariate normal distributions for and the data error, one can apply a transformation of the variables to reduce to the case above. Equivalently, one can seek an to minimize where we have used to stand for the weighted norm squared (compare with the Mahalanobis distance). In the Bayesian interpretation is the inverse covariance matrix of , is the expected value of , and is the inverse covariance matrix of . The Tikhonov matrix is then given as a factorization of the matrix (e.g. the Cholesky factorization) and is considered a whitening filter.

This generalized problem has an optimal solution which can be written explicitly using the formula or equivalently, when Q is not a null matrix:

Lavrentyev regularization

[edit]

In some situations, one can avoid using the transpose , as proposed by Mikhail Lavrentyev.[24] For example, if is symmetric positive definite, i.e. , so is its inverse , which can thus be used to set up the weighted norm squared in the generalized Tikhonov regularization, leading to minimizing or, equivalently up to a constant term,

This minimization problem has an optimal solution which can be written explicitly using the formula which is nothing but the solution of the generalized Tikhonov problem where

The Lavrentyev regularization, if applicable, is advantageous to the original Tikhonov regularization, since the Lavrentyev matrix can be better conditioned, i.e., have a smaller condition number, compared to the Tikhonov matrix

Regularization in Hilbert space

[edit]

Typically discrete linear ill-conditioned problems result from discretization of integral equations, and one can formulate a Tikhonov regularization in the original infinite-dimensional context. In the above we can interpret as a compact operator on Hilbert spaces, and and as elements in the domain and range of . The operator is then a self-adjoint bounded invertible operator.

Relation to singular-value decomposition and Wiener filter

[edit]

With , this least-squares solution can be analyzed in a special way using the singular-value decomposition. Given the singular value decomposition with singular values , the Tikhonov regularized solution can be expressed as where has diagonal values and is zero elsewhere. This demonstrates the effect of the Tikhonov parameter on the condition number of the regularized problem. For the generalized case, a similar representation can be derived using a generalized singular-value decomposition.[25]

Finally, it is related to the Wiener filter: where the Wiener weights are and is the rank of .

Determination of the Tikhonov factor

[edit]

The optimal regularization parameter is usually unknown and often in practical problems is determined by an ad hoc method. A possible approach relies on the Bayesian interpretation described below. Other approaches include the discrepancy principle, cross-validation, L-curve method,[26] restricted maximum likelihood and unbiased predictive risk estimator. Grace Wahba proved that the optimal parameter, in the sense of leave-one-out cross-validation minimizes[27][28] where is the residual sum of squares, and is the effective number of degrees of freedom.

Using the previous SVD decomposition, we can simplify the above expression: and

Relation to probabilistic formulation

[edit]

The probabilistic formulation of an inverse problem introduces (when all uncertainties are Gaussian) a covariance matrix representing the a priori uncertainties on the model parameters, and a covariance matrix representing the uncertainties on the observed parameters.[29] In the special case when these two matrices are diagonal and isotropic, and , and, in this case, the equations of inverse theory reduce to the equations above, with .[30][31]

Bayesian interpretation

[edit]

Although at first the choice of the solution to this regularized problem may look artificial, and indeed the matrix seems rather arbitrary, the process can be justified from a Bayesian point of view.[32] Note that for an ill-posed problem one must necessarily introduce some additional assumptions in order to get a unique solution. Statistically, the prior probability distribution of is sometimes taken to be a multivariate normal distribution.[33] For simplicity here, the following assumptions are made: the means are zero; their components are independent; the components have the same standard deviation . The data are also subject to errors, and the errors in are also assumed to be independent with zero mean and standard deviation . Under these assumptions the Tikhonov-regularized solution is the most probable solution given the data and the a priori distribution of , according to Bayes' theorem.[34]

If the assumption of normality is replaced by assumptions of homoscedasticity and uncorrelatedness of errors, and if one still assumes zero mean, then the Gauss–Markov theorem entails that the solution is the minimal unbiased linear estimator.[35]

See also

[edit]

Notes

[edit]
  1. ^ In statistics, the method is known as ridge regression, in machine learning it and its modifications are known as weight decay, and with multiple independent discoveries, it is also variously known as the Tikhonov–Miller method, the Phillips–Twomey method, the constrained linear inversion method, L2 regularization, and the method of linear regularization. It is related to the Levenberg–Marquardt algorithm for non-linear least-squares problems.

References

[edit]
  1. ^ a b Hilt, Donald E.; Seegrist, Donald W. (1977). Ridge, a computer program for calculating ridge regression estimates. doi:10.5962/bhl.title.68934.[page needed]
  2. ^ a b Gruber, Marvin (1998). Improving Efficiency by Shrinkage: The James--Stein and Ridge Regression Estimators. CRC Press. p. 2. ISBN 978-0-8247-0156-7.
  3. ^ Kennedy, Peter (2003). A Guide to Econometrics (Fifth ed.). Cambridge: The MIT Press. pp. 205–206. ISBN 0-262-61183-X.
  4. ^ Gruber, Marvin (1998). Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression Estimators. Boca Raton: CRC Press. pp. 7–15. ISBN 0-8247-0156-9.
  5. ^ Hoerl, Arthur E.; Kennard, Robert W. (1970). "Ridge Regression: Biased Estimation for Nonorthogonal Problems". Technometrics. 12 (1): 55–67. doi:10.2307/1267351. JSTOR 1267351.
  6. ^ Hoerl, Arthur E.; Kennard, Robert W. (1970). "Ridge Regression: Applications to Nonorthogonal Problems". Technometrics. 12 (1): 69–82. doi:10.2307/1267352. JSTOR 1267352.
  7. ^ Jolliffe, I. T. (2006). Principal Component Analysis. Springer Science & Business Media. p. 178. ISBN 978-0-387-22440-4.
  8. ^ For the choice of in practice, see Khalaf, Ghadban; Shukur, Ghazi (2005). "Choosing Ridge Parameter for Regression Problems". Communications in Statistics – Theory and Methods. 34 (5): 1177–1182. doi:10.1081/STA-200056836. S2CID 122983724.
  9. ^ van Wieringen, Wessel (2025-08-07). "Lecture notes on ridge regression". arXiv:1509.09169 [stat.ME].
  10. ^ Tikhonov, Andrey Nikolayevich (1943). "Об устойчивости обратных задач" [On the stability of inverse problems]. Doklady Akademii Nauk SSSR. 39 (5): 195–198. Archived from the original on 2025-08-07.
  11. ^ Tikhonov, A. N. (1963). "О решении некорректно поставленных задач и методе регуляризации". Doklady Akademii Nauk SSSR. 151: 501–504.. Translated in "Solution of incorrectly formulated problems and the regularization method". Soviet Mathematics. 4: 1035–1038.
  12. ^ Tikhonov, A. N.; V. Y. Arsenin (1977). Solution of Ill-posed Problems. Washington: Winston & Sons. ISBN 0-470-99124-0.
  13. ^ Tikhonov, Andrey Nikolayevich; Goncharsky, A.; Stepanov, V. V.; Yagola, Anatolij Grigorevic (30 June 1995). Numerical Methods for the Solution of Ill-Posed Problems. Netherlands: Springer Netherlands. ISBN 0-7923-3583-X. Retrieved 9 August 2018.
  14. ^ Tikhonov, Andrey Nikolaevich; Leonov, Aleksandr S.; Yagola, Anatolij Grigorevic (1998). Nonlinear ill-posed problems. London: Chapman & Hall. ISBN 0-412-78660-5. Retrieved 9 August 2018.
  15. ^ Phillips, D. L. (1962). "A Technique for the Numerical Solution of Certain Integral Equations of the First Kind". Journal of the ACM. 9: 84–97. doi:10.1145/321105.321114. S2CID 35368397.
  16. ^ Hoerl, Arthur E. (1962). "Application of Ridge Analysis to Regression Problems". Chemical Engineering Progress. 58 (3): 54–59.
  17. ^ Foster, M. (1961). "An Application of the Wiener-Kolmogorov Smoothing Theory to Matrix Inversion". Journal of the Society for Industrial and Applied Mathematics. 9 (3): 387–392. doi:10.1137/0109031.
  18. ^ Hoerl, A. E.; R. W. Kennard (1970). "Ridge regression: Biased estimation for nonorthogonal problems". Technometrics. 12 (1): 55–67. doi:10.1080/00401706.1970.10488634.
  19. ^ Hoerl, Roger W. (2025-08-07). "Ridge Regression: A Historical Context". Technometrics. 62 (4): 420–425. doi:10.1080/00401706.2020.1742207. ISSN 0040-1706.
  20. ^ Ng, Andrew Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance (PDF). Proc. ICML.
  21. ^ R.-E. Fan; K.-W. Chang; C.-J. Hsieh; X.-R. Wang; C.-J. Lin (2008). "LIBLINEAR: A library for large linear classification". Journal of Machine Learning Research. 9: 1871–1874.
  22. ^ Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo (2012). "Online nonnegative matrix factorization with robust stochastic approximation". IEEE Transactions on Neural Networks and Learning Systems. 23 (7): 1087–1099. doi:10.1109/TNNLS.2012.2197827. PMID 24807135. S2CID 8755408.
  23. ^ Koch, Lukas (2022). "Post-hoc regularisation of unfolded cross-section measurements". Journal of Instrumentation. 17 (10): 10021. arXiv:2207.02125. Bibcode:2022JInst..17P0021K. doi:10.1088/1748-0221/17/10/P10021.
  24. ^ Lavrentiev, M. M. (1967). Some Improperly Posed Problems of Mathematical Physics. New York: Springer.
  25. ^ Hansen, Per Christian (Jan 1, 1998). Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (1st ed.). Philadelphia, USA: SIAM. ISBN 978-0-89871-403-6.
  26. ^ P. C. Hansen, "The L-curve and its use in the numerical treatment of inverse problems", [1]
  27. ^ Wahba, G. (1990). "Spline Models for Observational Data". CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics. Bibcode:1990smod.conf.....W.
  28. ^ Golub, G.; Heath, M.; Wahba, G. (1979). "Generalized cross-validation as a method for choosing a good ridge parameter" (PDF). Technometrics. 21 (2): 215–223. doi:10.1080/00401706.1979.10489751.
  29. ^ Tarantola, Albert (2005). Inverse Problem Theory and Methods for Model Parameter Estimation (1st ed.). Philadelphia: Society for Industrial and Applied Mathematics (SIAM). ISBN 0-89871-792-2. Retrieved 9 August 2018.
  30. ^ Huang, Yunfei.; et al. (2019). "Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells". Scientific Reports. 9 (1): 537. arXiv:1810.05848. Bibcode:2019NatSR...9..539H. doi:10.1038/s41598-018-36896-x. PMC 6345967. PMID 30679578.
  31. ^ Huang, Yunfei; Gompper, Gerhard; Sabass, Benedikt (2020). "A Bayesian traction force microscopy method with automated denoising in a user-friendly software package". Computer Physics Communications. 256: 107313. arXiv:2005.01377. Bibcode:2020CoPhC.25607313H. doi:10.1016/j.cpc.2020.107313.
  32. ^ Greenberg, Edward; Webster, Charles E. Jr. (1983). Advanced Econometrics: A Bridge to the Literature. New York: John Wiley & Sons. pp. 207–213. ISBN 0-471-09077-8.
  33. ^ Huang, Yunfei.; et al. (2019). "Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells". Scientific Reports. 9 (1): 537. arXiv:1810.05848. Bibcode:2019NatSR...9..539H. doi:10.1038/s41598-018-36896-x. PMC 6345967. PMID 30679578.
  34. ^ Vogel, Curtis R. (2002). Computational methods for inverse problems. Philadelphia: Society for Industrial and Applied Mathematics. ISBN 0-89871-550-4.
  35. ^ Amemiya, Takeshi (1985). Advanced Econometrics. Harvard University Press. pp. 60–61. ISBN 0-674-00560-0.

Further reading

[edit]
做月子可以吃什么 子宫内膜异位症是什么意思 肾阴虚吃什么药最好 淋巴门结构可见是什么意思 普洱属于什么茶
asks是什么意思 gpr是什么意思 肠胃感冒吃什么食物 什么叫个性强 什么是周记
榴莲补什么 果酱样大便见于什么病 如梦初醒是什么意思 腿上有白点是什么原因 瓦特发明了什么
感冒能吃什么水果 尿毒症是什么病 护士证什么时候下来 什么人容易得胆汁淤积 什么人骗别人也骗自己
虚火牙痛吃什么药效果最快hcv7jop9ns3r.cn 胸膜炎有什么症状hcv9jop4ns7r.cn 唯粉是什么意思hcv7jop7ns4r.cn 梦到别人怀孕是什么意思hcv9jop6ns1r.cn 厄瓜多尔说什么语言naasee.com
脂蛋白a高是什么原因引起的jingluanji.com iphone5什么时候出的hcv8jop2ns2r.cn 褥疮用什么药最好hcv8jop0ns6r.cn 指甲变薄是什么原因yanzhenzixun.com 每天起床口苦口臭是什么原因hcv7jop9ns2r.cn
大便长期不成形是什么原因hcv9jop1ns5r.cn 双肺纹理增多是什么意思严重吗hcv9jop2ns0r.cn 舌头尖有小红点这是什么症状luyiluode.com 桂字五行属什么hcv8jop0ns2r.cn 变应性鼻炎是什么意思hcv8jop8ns6r.cn
水奶和奶粉什么区别hcv9jop1ns5r.cn 小儿疝气挂什么科wuhaiwuya.com 法式刘海适合什么脸型hcv9jop6ns0r.cn 高血压应该吃什么hcv8jop1ns7r.cn 吃什么菜减肥最快96micro.com
百度